
Strategic Modelling with Graph Rewriting Tools

Olivier Namet

Doctorate of Philosophy in Computer Research

King’s College London

Department of Informatics

2

Abstract

To model complex systems, graphical formalisms have clear advantages: they are more intuitive

and make it easier to visualise a system and convey intuitions or ideas about it. Graph rewriting

rules can be used to model their dynamic evolution and from a practical point of view, graph

transformations have many applications in specification, programming, and simulation tools.

Strategic rewriting has been studied for term rewriting systems, and there are languages that

allow the user to specify a strategy controlling the use of rewrite rules and to apply it. For graph

rewriting, some graph-transformation languages and tools allow the users to specify the way rules

are applied. However, there is no general language that uses positions explicitly to apply rules.

The work presented in this thesis describes a new notion of located graphs and a strategy

language containing focusing constructs. In a graph, there is no notion of a root so standard term

rewriting strategies based on top-down or bottom-up traversals do not make sense in this setting.

We solve the problem by introducing the notion of position and banning in our located graphs

and strategy language to allow for graph traversals and selective rule application based on location

within a graph.

Two tools graphPaper and PORGY are also described, which allow users to create graph rewrit-

ing systems and to apply strategies on them to create trace trees forming result sets. Specifically,

the full implementation of graphPaper, a tool to create and edit graph rewriting systems, is de-

scribed as well as the implementation of the strategy language into the PORGY system to allow

users to view a dynamic trace of the computation of a strategic graph system.

3

Acknowledgements

I would like to thank first and foremost my supervisor, Maribel Fernández, for her constant support

and her critical (but always constructive) comments on my work. It has been a great pleasure and

honour working with her for the last four years and a definite highlight of my PhD. I will greatly

miss our theoretical discussions as well as our shared love of dance!

I am also grateful to Ian Mackie who supervised my Master’s project and is responsible for

introducing me to the world of graph rewriting.

I would like to thank Sebastian Hunt and Detlef Plump for accepting to be examiners for my

thesis.

I would also like to thank the PORGY team: Oana Andrei, Hélène Kirchner, Guy Melançon and

Bruno Pinaud for the invaluable experience of doing both practical and theoretical work in team.

Their experience and knowledge have been an important contribution to my learning experience.

I would like to thank my friends Sami Ali Adib, Katie Hart, Daniel Lawrence, Holly Russell-

Allison, Nicholas Swart and Antonio Zardis (to only name a few) for their support in times of

stress and particularly Katie for feeding my cats when I was away at conferences!

I cannot begin to thank my mother, Marie-Françoise Namet, enough for all the support a

mother gives and for always believing in me even when I doubted myself.

Finally, I would like to dedicate this thesis to the memory of my father, Alain Namet.

Contents

1 Introduction 10

2 Background 16

2.1 Graph Rewriting Systems . 16

2.1.1 Port Graphs . 16

2.1.2 Interaction Nets . 28

3 Related Work 36

3.1 Graph and Hypergraph Rewriting . 36

3.1.1 Hypergraphs and Hyperedge Replacement 36

3.1.2 Graph Grammars . 37

3.1.3 Interaction Nets . 38

3.1.4 Summary . 38

3.2 Graph rewriting Tools . 38

3.2.1 GROOVE . 39

3.2.2 Fujaba . 39

3.2.3 AGG . 40

3.2.4 PROGRES . 40

3.2.5 GrGen . 40

3.2.6 GReAT . 41

3.2.7 Summary . 41

3.3 Strategic Term & Graph Rewriting Tools . 41

3.3.1 ELAN . 41

3.3.2 TOM . 42

3.3.3 Stratego . 43

3.3.4 GP . 43

3.3.5 Summary . 43

4 graphPaper : A Tool to Create Graph Rewriting Systems 45

4.1 Description . 45

4.2 Design Philosophy . 45

4.2.1 Interaction . 45

4.2.2 Display . 48

4

CONTENTS 5

4.3 Implementation and PORGY . 48

5 Strategy Language 49

5.1 Introduction . 49

5.1.1 Located Graphs . 49

5.1.2 Located Port Graph Rewrite Rule . 49

5.1.3 Graph Programs . 50

5.2 Syntax . 50

5.2.1 Focusing . 51

5.2.2 Transformations . 52

5.2.3 Applications . 53

5.2.4 Strategies . 53

5.3 Semantics . 53

5.3.1 Focusing Operators . 53

5.3.2 Transformation, Applications and Strategy Operators 54

5.3.3 An Example . 57

5.4 Properties . 60

5.4.1 Termination . 60

5.4.2 Normal Forms . 61

5.4.3 Result Set . 61

5.4.4 Completeness . 62

6 Application of the Strategy Language 64

6.1 Non-Primitive Operators . 64

6.2 Traversals . 64

6.2.1 Outermost Traversal . 65

6.2.2 Innermost Traversal . 65

6.2.3 Interface Normal Form Traversal . 65

6.3 Arithmetic with Interaction Nets . 66

6.4 Von Koch Fractals using Port Graphs . 67

6.5 Sierpinski’s Triangle Generation Using Port Graphs 68

6.6 Game and AI Example Using Pacman . 71

6.7 Pathfinding . 74

6.8 Flag Sorting . 81

6.9 Biochemical Reactions in the AKAP Model . 82

7 PORGY 85

7.1 The TULIP Tool . 85

7.2 The PORGY Tool . 86

7.2.1 Implementing Ports, Rules and Models . 86

7.2.2 Node, Rule and Graph Creation . 88

7.2.3 The Main PORGY Window . 89

CONTENTS 6

7.2.4 Model and Rule Visualisation . 89

7.2.5 Strategy and Rule Application . 90

7.2.6 Debugging and Static Analysis . 90

7.2.7 Pattern Matching . 91

7.2.8 Rewriting Plugin . 92

7.2.9 Strategy Engine . 92

8 Conclusion & Future Work 94

A Flag Sorting Example 103

B PORGY Tool 110

List of Figures

2.1 Some examples of port graphs. α denotes a variable node and γ and ε denote two

variable ports. 19

2.2 Seven examples rules, different line types are used for clarity only. α is used to

denote a variable node and β denotes a variable port. 21

2.3 Four examples of rules. α and β are variable labels. 23

2.4 A rewrite step showing all the phases of the rewriting using the rule in Figure 2.2.d

on a port graph. 25

2.5 A rewrite step showing all the phases of the rewriting using the rule in Figure 2.2.e

on a port graph. 26

2.6 A rewrite step showing all the phases of the rewriting using a rule with a variable

node label. 27

2.7 General format of an agent and an interaction rule. 28

2.8 Three agent types needed to code addition. 30

2.9 First add rule. 30

2.10 Second add rule. 31

2.11 Starting net expressing 2 + 1. 31

2.12 Three successive rewrites. 32

2.13 Three agent types needed to code multiplication. 32

2.14 The ε rule. 33

2.15 The δ rule. 33

2.16 The first mult rule. 33

2.17 The second mult rule. 34

2.18 The rule in Figure 2.16 redrawn as a port graph rule. 34

2.19 The rule in Figure 2.9 redrawn as a port graph rule. 35

3.1 An example hypergraph. 37

4.1 A rule in graphPaper. 48

5.1 Syntax of the strategy language. 51

5.2 Syntax of the Property language. 51

5.3 The fully developed derivation tree. 59

5.4 The derivation tree developed to step 8. 60

7

LIST OF FIGURES 8

6.1 An example number and the open, reduce and negate rules. 67

6.2 Modelling Addition, Negation and Subtraction. 67

6.3 Modelling the Von Koch Fractal. 68

6.4 The Von Koch Fractal. 68

6.5 The evolution of a Sierpinski Triangle. 69

6.6 The only Sierpinski Triangle rule. 69

6.7 The first derivation. 70

6.8 The second derivation. 70

6.9 The start of the third derivation. 71

6.10 The pac-man playing field. 72

6.11 The set of rules to control pac-man (left) and to control the ghosts (right). 72

6.12 An example of a labyrinth. 75

6.13 A Labyrinth node, End node and V isited node. 75

6.14 A Pather node and the four Direction nodes. 76

6.15 The set of rules for cp2. 76

6.16 The set of rules for ε. 77

6.17 The split4 rule. α is a Labyrinth or End node. 77

6.18 The split3a rule. α is a Labyrinth or End node. 78

6.19 The split2a and split1a rule. α is a Labyrinth or End node. 79

6.20 The found, done and drawN rules. 80

6.21 The four port node types and the 3 flag sorting rules. 81

6.22 The rules relating to the AKAP Model. 83

6.23 The starting graph for the AKAP model. 84

7.1 TULIP’s representation of graphs. 86

7.2 A port node A (with its four ports 1,2,3 and 4) represented in TULIP. 87

7.3 An interaction net example (3× 2) displayed using the port graph drawing algorithm. 87

A.1 A trace tree for the Flag Sorting example. 104

A.2 The starting model for the Flag Sorting example, zoomed in to see port naming. . 105

A.3 The white1 rule. 106

A.4 The red1 rule. 106

A.5 The red2 rule. 107

A.6 A small multiples view for the Flag Sorting example: the large font means explicit

models whereas the small font labels intermediate models that highlight the left

hand side instance of a rule. 108

A.7 A small multiples view for the Flag Sorting example zoomed in to the first line. . . 109

B.1 PORGY node, rule and graph creation main window. 111

B.2 The add node window. 112

B.3 The add port window. 112

B.4 The add nodes to a model window. 112

LIST OF FIGURES 9

B.5 The rule creation window. 113

B.6 The add edge window for rules (Left wiring). 113

B.7 The add edge window for rules (Bridge wiring). 114

B.8 The main PORGY window. 115

B.9 An example trace in PORGY (including some Fail nodes). 116

B.10 The apply rule window. 117

B.11 The strategy panel. 118

B.12 The small multiples view panel.. 119

B.13 The animation panel. 119

Chapter 1

Introduction

Graphs as a Modelling Tool and Graph Rewriting

To model complex systems, graphical formalisms have clear advantages, in particular in the earlier

phases of the specification: graphical formalisms are more intuitive to represent data and relations

and make it easier to visualise a system and convey intuitions or ideas about it.

A lot of models can be represented as graphs: networks of servers, natural language processing,

chemical structures, biological entities (such as proteins and DNA), maps (for geographical regions

and for transport infrastructures ranging from roads to trains) and mathematical applications for

fractals and geometry.

Some graph formalisms use a textual language to describe and view graphs. This seems coun-

terproductive to the natural visual aspect of graphs and therefore this thesis will seek to prioritise

visual methods to create and view graphs. Tools such as TULIP[12, 14, 13] and ASK-GraphView[4]

allow users to view graphs of any size and allow data to be extracted from graphs or even high-

lighted directly on a visual representation of the graph.

Graphs on their own represent a static modelling tool, showing us only a snapshot of the

model. Using rewriting on graphs would allow the graph to evolve and provide more depth to the

modelling. Rewriting [15, 72] is a transformation process based on the use of rules that are applied

to syntactic objects such as words, terms, programs, proofs and more importantly graphs. It has a

variety of applications; for instance, it is used to simplify algebraic expressions in computer algebra,

to perform syntactic analysis of programs or natural language expressions, to define the operational

semantics of a programming language, to study the structure of a group or a monoid, or to express

the computational content of a mathematical proof. Other practical applications include program

refactoring, static analysis, code optimisation in compilers, specification of security policies, or the

modelling of complex systems in biology[9, 20, 27, 32, 22, 31].

Combined with graph rewriting rules, graphs can show a visual and dynamic evolution of a

model, for instance a series of chemical reactions.

Computing by graph rewriting is also a fundamental concept in concurrency. From a theoretical

point of view, graph rewriting comes with solid logic, algebraic and categorical foundations [30, 35],

and from a practical point of view, graph transformations have many applications in specification,

programming, and simulation tools [35]. In this thesis, we use port graph rewriting systems (a

10

CHAPTER 1. INTRODUCTION 11

general class of graph rewriting systems that have been successfully used to model biochemical

systems, interaction net systems and networked servers) for the development of a visual modelling

tool.

Rewriting enhances modelling with graphs by making the graphs dynamic. Applying a rule on

a graph can produce more than one result (non-determinism) if the rule can be applied in more

than one location in the graph, creating a tree of derivations also known as a trace tree. Knowing

this, a control method is required to be able to guide the rewriting and therefore the evolution of

the model. For this, in this thesis we design a strategy language for port graph rewriting.

Strategy in the Context of Rewriting

Reduction strategies define which (sub)expression(s) should be selected for evaluation and which

rule(s) should be applied (see [50, 25] for general definitions). These choices affect fundamental

properties of computations such as laziness, strictness, completeness, termination and efficiency,

to name a few (see, e.g.,[76, 73, 54]). Used for a long time in λ-calculus [18], strategies are

present in programming languages such as Clean [64], Curry [48], and Haskell [49] and can be

explicitely defined to rewrite terms in languages such as Elan [24], Stratego [75], Maude [59] or

Tom [17]. They are also present in graph transformation tools such as PROGRES [69], AGG [36],

Fujaba [61], GROOVE [68], GrGen [44] and GP [67]. The strategy language defined in Chapter

5 draws inspiration from these previous works, but a distinctive feature of the language is that it

allows users to define strategies including not only operators to combine graph rewriting rules but

also operators to define (and change throughout the execution) the location in the target graph

where rules should, or should not, apply.

The language offers a set of primitives to select rewriting rules and a set of primitives to select

the position where the rules apply. Alternatively, positions could be encoded in the rewrite rules

using markers or conditions (as done in other languages based on graph rewriting which do not

have focusing primitives). We prefer to separate the two notions (positions and rules) to make

programs more readable (the rewrite rules are not cluttered with encodings), and easier to maintain

and adapt. In this sense, the language facilitates separation of concerns: for example, to change

the traversal algorithm it is sufficient to change the strategy and not the whole rewriting system

including the rules.

The graphPaper & the PORGY Tools

This thesis presents two tools used for strategic modelling using graph rewriting. graphPaper is

a visually intuitive graph editor that allows users to create, edit and visualise port graphs and

port graph rewriting rules. Users can create graphs and rules by drawing only two shapes with a

mouse and graphPaper will use context to determine the user’s intention (for example drawing a

line between two ports connects them whereas drawing a line across an edge deletes the edge). In

this way, graphPaper aims to allow users to create graphs and rules as if they were using a pen

and paper with the added dynamic nature that computers provide . The PORGY tool, designed

CHAPTER 1. INTRODUCTION 12

by an INRIA associate team consisting of Maribel Fernández1 and Olivier Namet2 (King’s College

London), Hélène Kirchner3 (INRIA), Bruno Pinaud4 and Guy Melançon5 (INRIA and Université

de Bordeaux) and Oana Andrei6 (University of Glasgow) allows the creation and editing of graph

rewriting systems as well but also lets the user apply rules and strategies (written in the language

defined in Chapter 5) onto graphs and to visualise the evolution of the model in the form of a trace

tree. PORGY also contains debugging and data analysis features to help users construct and view

their models.

Main Contributions:

The main contribution of this thesis is a language for strategic modelling of complex graph rewriting

systems, using focusing constructs to control the location of the rewriting. The strategy language

allows users to describe not only the rules that need to be applied, but also the location where they

apply, and the propagation mechanism controlling successive applications of rules using focusing

constructs. The latter is complicated by the fact that in a graph there is no notion of a root, so

standard term rewriting strategies based on top-down or bottom-up traversals do not make sense

in this setting. The strategy language provides a distinct set of constructs that allow users to

build subgraphs of the current graph they are rewriting on and to then set these subgraphs as the

position and banned subgraphs of the graph (where rewrite rules must at least overlap with the

position subgraph and cannot have anything in common with the banned subgraph).

A selection of different applications are presented as case studies with fields ranging from games

and AI to arithmetic and geometric (fractal generation) modelling.

Also, the implementation of graphPaper, a tool to create and edit graph rewriting systems,

is described as well as the design and implementation of PORGY, a visual and interactive tool

developed to model complex systems using port graphs and port graph rewrite rules guided by

strategies, and to navigate in the derivation history.

The results in Chapter 5 were developed in collaboration with Oana Andrei, Maribel Fernández,

Hélène Kirchner, and Bruno Pinaud and the chapter expands and improves the results described

in the papers listed in the Publication section. As an author of these papers, I contributed fully to

the research, the writing up, and was in charge of presenting the papers at all of their respective

conferences or workshops.

The examples described in Chapter 6 were all created by the author of this thesis and some

(or parts) of these examples were included in published papers (See Publication section) and

demonstrated at various conferences, workshops and classes.

The results in Chapter 7 expand on the work of the INRIA associate team (mentioned pre-

viously) where the author’s main contributions to PORGY are the Strategy Engine and making

design decisions including the GUI and interface of PORGY.
1http://www.dcs.kcl.ac.uk/staff/maribel/
2http://www.oliviernamet.co.uk
3https://wiki.bordeaux.inria.fr/Helene-Kirchner/doku.php
4http://www.labri.fr/perso/bpinaud/
5http://www.labri.fr/perso/melancon/
6http://dcs.gla.ac.uk/ oandrei/

CHAPTER 1. INTRODUCTION 13

Publications:

• Graph Creation, Visualisation and Transformation[39] (RULE 2009 - Maribel Fer-

nández, Olivier Namet)

Abstract: We describe a tool to create, edit, visualise and compute with interaction nets - a

form of graph rewriting systems. The editor, called GraphPaper, allows users to create and

edit graphs and their transformation rules using an intuitive user interface. The editor uses

the functionalities of the TULIP system, which gives us access to a wealth of visualisation

algorithms. Interaction nets are not only a formalism for the specification of graphs, but also

a rewrite-based computation model. We discuss graph rewriting strategies and a language

to express them in order to perform strategic interaction net rewriting.

• Strategic programming on graph rewriting systems[40] (IWS 2010 - Maribel Fernán-

dez, Olivier Namet)

Abstract: We describe a strategy language to control the application of graph rewriting rules,

and show how this language can be used to write high-level declarative programs in several

application areas. This language is part of a graph-based programming tool built within the

port-graph transformation and visualisation environment PORGY.

• PORGY: Strategy-Driven Interactive Transformation of Graphs[8] (TERMGRAPH

2011 - Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet,

Bruno Pinaud)

Abstract: This paper investigates the use of graph rewriting systems as a modelling tool,

and advocates the embedding of such systems in an interactive environment. One important

application domain is the modelling of biochemical systems, where states are represented

by port graphs and the dynamics is driven by rules and strategies. A graph rewriting tool’s

capability to interactively explore the features of the rewriting system provides useful insights

into possible behaviours of the model and its properties. We describe PORGY, a visual and

interactive tool we have developed to model complex systems using port graphs and port

graph rewrite rules guided by strategies, and to navigate in the derivation history. We

demonstrate via examples some functionalities provided by PORGY.

• A Strategy Language for Graph Rewriting (LOPSTR 2011 - Maribel Fernández, Hélène

Kirchner, Olivier Namet)

Abstract: We give a formal semantics for a graph-based programming language, where a

program consists of a collection of graph rewriting rules, a user-defined strategy to control

the application of rules, and an initial graph to be rewritten. The traditional operators found

in strategy languages for term rewriting have been adapted to deal with the more general

setting of graph rewriting, and some new constructs have been included in the language to

deal with graph traversal and management of rewriting positions in the graph. This language

is part of the graph transformation and visualisation environment PORGY.

CHAPTER 1. INTRODUCTION 14

Outline of the Rest of the Thesis

• Chapter 2 Background motivates the use of port graph rewriting systems and interaction

nets by providing both formalisms as well as some of their properties.

• Chapter 3 Related Work

– Section 3.1 Graph and Graph Rewriting describes different graph and graph

rewriting systems and motivates our choice of port graphs.

– Section 3.2 Graph Rewriting Tools describes different tools that use graph rewrit-

ing and motivates the design decisions behind PORGY.

– Section 3.3 Strategic Term & Graph Rewriting Tools describes different kinds

of existing strategic modelling and explains the importance of the notion of position in

strategic graph rewriting.

• Chapter 4 graphPaper : A Tool to Create Graph Rewriting Systems gives us an

overview of the idea behind graphPaper’s unique visual and interactive interface as well as a

description of the implementation.

• Chapter 5 Strategy Language

– Section 5.1 Introduction presents certain new concepts such as located graphs, graph

programs and result sets, and the notion of termination.

– Section 5.2 Syntax defines the grammar of the strategy language in 4 categories:

focusing, transformations, applications and strategies.

– Section 5.3 Semantics shows and explains the semantic rules for each operator in

the language used when executing a strategy.

– Section 5.4 Properties explores and proves several interesting properties of the

strategy language: termination, characterisation of normal forms, result set and com-

pleteness.

• Chapter 6 Application of the Strategy Language

– Section 6.1 Non-Primitive Operators shows some non-primitive operators that

make the language easier to use such as not(), try() and repeat().

– Section 6.2 Traversals explains how several common types of traversals (outermost,

innermost and interface normal form) are achieved with the strategy language.

– Section 6.3-6.9 Various Examples describes different models using port graphs and

the strategy language: arithmetic using interaction nets, Von Koch fractals, Sierpinski’s

Triangle generation, AI in a game of pacman, finding the shortest path in a labyrinth,

flag sorting and biomolecular reaction in the AKAP model.

• Chapter 7 PORGY details the motivation behind the PORGY tool, its features and how

the backend works. The latter uses TULIP to provide a powerful data structure (allowing for

CHAPTER 1. INTRODUCTION 15

very large graphs) and a strong visual interface using OpenGL. The Chapter also describes

the general interface of the tool and all the plugins created to make PORGY including the

pattern matching algorithm and the strategy engine.

• Chapter 8 Conclusion & Future Work concludes the thesis by summarising the thesis

and describing the contributions presented in this thesis as well as future work for the strategy

language and the graphPaper and PORGY tools.

Throughout the thesis the shorthand notation Section X.Y is used to mean Chapter X, Section

Y .

Chapter 2

Background

2.1 Graph Rewriting Systems

There are several definitions of graph rewriting, using different kinds of graphs and rewriting rules

(see, for instance, [29, 46, 19, 66, 21, 52]). For this thesis, we consider the port graph rewriting

systems introduced in [6], of which interaction nets [52] can be seen as a particular case. The main

originality of port graphs is the presence of labelled ports on nodes, and attributes and values that

can be associated to nodes and ports. An edge between two nodes is actually connected through a

port of each node, and attributes and variables can be used to store extra data and change the way

rewriting happens. This system allows for a more natural modelling of systems such as biochemical

reactions (where for example a protein can be seen as a node, its different connection sites as ports

and attributes the state of each site and of the actual protein).

We recall below the main notions of port graph rewriting and interaction nets.

2.1.1 Port Graphs

Intuitively, a port graph is a graph where nodes have explicit connection points called ports; edges

are attached to ports.

Definition 1. We define a p-signature ∇ with:

• ∇N , a set of node labels.

• XN , a set of node label variables.

• ∇P , a set of port labels

• XP , a set of port label variables.

• ∇A , a set of attribute labels.

• ∇V , a set of value labels.

• ∗, representing a variable element to be used with ∇A and ∇V when a specific label of a value

and attribute is not important.

16

CHAPTER 2. BACKGROUND 17

We assume that ∇N , XN , ∇P , XP , ∇A and ∇V are pairwise disjoint, to avoid confusion.

Each node label N has a finite set of port labels Interface(N) ⊆ ∇P and Interface(X) ⊆

∇P ∪ XP for all X ∈ XN .

Similarly, each node label N has a finite set of attribute labels Attribute(N) ⊆ ∇A and each port

label P (such that P ∈ Interface(N)) has a finite set of attribute labels Attribute(N,P) ⊆ ∇A .

A labelled port graph over a p-signature ∇ is a tuple G = (VG, lvG, EG) where:

• VG is a finite set of nodes.

• lvG is a function that returns, for a given node n ∈ VG, a node label (the node’s name), a

set of port labels (each with their own sets of attribute labels and assigned value labels), and

a set of attribute labels (each with a value label). This can be represented using a record:

lvg(n) = [name,

(p1, a
1
1) = V1,1, (p1, a

2
1) = V1,2, . . . , (pn, a

m
n) = Vn,m,

a10 = V0,1, . . . , a
n
0 = V0,n]

where: n ∈ VG

name ∈ ∇N ∪ XN

Vn.m ∈ ∇V ∪ {∗}

pn ∈ ∇P ∪ XP

amn ∈ ∇A

lvG can also be seen as a family of functions:

lvGname : VG → ∇N ∪ XN

lvGname(n) = N

lvGports : VG → ∇P ∪ XP

lvGports(n) = Interface(lvGname(n))

lvGportAttributes : VG ×∇P → ∇A

lvGportAttributes(n)(P) = Attribute(lvGname(n), P)

where P ∈ Interface(lvGname(n))

lvGportAttributeV alue : VG ×∇P ×∇A → ∇V

lvGportAttributeV alue(n)(P)(A) = V

where P ∈ lvGports(n)

A ∈ lvGportAttributes(n)(P)

V ∈ ∇V ∪ {∗}

lvGattributes : VG → ∇A

lvGattributes(n) = Attribute(lvGname(n))

lvGattributeV alue : VG ×∇A → ∇V

lvGattributeV alue(n)(A) = V

where A ∈ lvGattributes(n)

V ∈ ∇V ∪ {∗}

Here, n represents an actual node of VG while N , P , A and V are labels (or label variables)

of nodes, ports, attributes and values respectively.

CHAPTER 2. BACKGROUND 18

We say that lvG(n) ∼= lvH(m) for two given port graphs G and H if all the family functions

results are equal for n and m with the added flexibility that a variable label can be equal to

any label, that ∗ is equal to any value or attribute label. This definition of ∼= will be used in

the Port Graph Morphism to follow.

• EG ⊆ {〈(v1, p1), (v2, p2)〉 | vi ∈ VG, pi ∈ Interface(lvGname(vi))} is a finite multi-set of

edges where 〈(v1, p1), (v2, p2)〉 is an unordered pair (edges are undirected). EG needs to be a

multiset since two nodes can be connected by more than one edge on the same ports.

To be able to track individual nodes, each node is given an identity (the nature of this identity

is determined by the implementation, for example the PORGY tool described in Chapter 7 gives

each node a unique identifier). When new nodes are added to a port graph, the implementation

will make sure they are assigned identities that are not currently in use in that port graph. This

will guarantee that nodes in a port graph, while being able to have the same node label, will never

have the same identity.

Attributes and Values

As defined in 2.1.1, a port may have a set of pairs of attributes and values which can be used

to represent a state (for instance, active/inactive or principal/auxiliary) or other properties (for

example weight or colour). Similarly, nodes can also have attributes representing properties such

as colour, shape, root, leaf...

Two nodes with the same node label must have the same set of attributes (in the same way

that they must have the same set of port labels) however the values of those attributes can be

different. Similarly, ports with the same port label (belonging to nodes with the same node label)

must have the same of attributes but their values can be different.

We denote a = v to mean that the attribute label a has been assigned the value label v. For

example active = True, colour = blue and size = ∗ (in the latter example, this would mean we

do not care what the value of size is, just that the attribute exists).

We assume that for implementations values are basic data types such as strings, int, float,

bool. Values are not computable expressions so therefore we have no issues with decidability,

non-termination, and non-determinism.

These attributes may be used for visualisation purposes and are essential for the definition of

the Property() operator introduced in Section 5.2; they are later illustrated in examples.

Figure 5.2 in Section 5.2 formally defines the language for attributes and values to be used with

the Property(,) operator.

CHAPTER 2. BACKGROUND 19

Figure 2.1: Some examples of port graphs. α denotes a variable node and γ and ε denote two

variable ports.

Graphical Convention

The view of a port graph used throughout this thesis is illustrated in Figure 2.1. On the left we

see the representation of a water molecule. The two nodes labelled H are hydrogen atoms that

each have have a port labelled e (representing the electron they each have). The oxygen molecule

is labelled O and has two valence electrons, represented by the ports e1 and e2. Here we represent

the bonds between two atoms (their sharing of one of their electrons each) using edges.

On the right we see a more abstract port graph where we see that two different ports can be

connected to the same third port, two ports of a same node are connected and that two ports can

have more than one edge connecting them.

Sets of pairs of attributes and values are represented by grey boxes that are connected by a

dashed line to a node or a port. Typically we will not display the attributes boxes unless they

are required for a rewriting rule or to explicitly show a matching of a rule (See Figure 2.2 for an

example of such a rule).

Port Graph Morphism

Let G and H be two port graphs over the same p-signature ∇ (Defined at the start of this section).

A port graph morphism f : G→ H maps nodes, ports, edges, node attributes and values, and port

attributes and values of G to those of H such that all labels are preserved, the attachment of edges

is preserved and the set of pairs of attributes and values for nodes and ports are also preserved.

We say that G and H are isomorphic if f : 〈fV : VG → VH , fE : EG → EH〉 is bijective with:

• fV : VG → VH , a mapping from the node set of G to the node set of H such that if n ∈ VG
and fV (n) ∈ VH then lvG(n) ∼= lvH(fV (n)). (See Definition 1 for an explanation of ∼=)

This ensures that each corresponding pair of nodes between G and H have the same node

label, same set of port labels (each with the same set of attribute labels and associated value

labels) and the same set of attribute labels and associated value labels.

CHAPTER 2. BACKGROUND 20

• fE : EG → EH , a mapping from the multi-set of edges of G to the multi-set of edges of H

such that if 〈(v1, p1), (v2, p2)〉 ∈ EG then 〈(fV (v1), p1), (fV (v2), p2)〉 ∈ EH .

Port Graph Rewriting

We denote a port graph rewrite rule L⇒ R as a port graph by defining a node (called arrow node)

that encodes the correspondence between the nodes of L and the nodes of R (both subgraphs of

the rule).

Definition 2. A port graph rewrite rule L⇒ R is a port graph consisting of:

• Two port graphs L and R over the p-signature ∇, the left-hand-side and right-hand-side

respectively.

• an arrow node (⇒) that has a set of ports.

• a set of arrow-edges that each connect a port of the arrow node to a port of a node in L or

R. This set must satisfy the condition that all the ports of the arrow node must be connected

to either one or two arrow-edges.

Each port of the arrow node connected to a single arrow-edge must be connected to a port

on the left-hand-side. Also, each port of the arrow node connected to two arrow-edges must

satisfy one of the following conditions regarding its two arrow-edges:

1. The port is connected to a port p1 of a node on the left-hand-side and a port p2 of a

node on the right-hand-side.

This forms a bridge between both sides so that the rewiring (which will be defined later)

will take the non-arrow-edges of p1 and connect them to p2.

2. The port is connected to two ports p1 and p2 each from a node on the left-hand-side.

This particular rewiring takes all the ports that are connected to p1 and creates an edge

for each of those ports to each of the ports connected to p2.

3. The port cannot be connected to two nodes on the right-hand-side.

The set of arrow-edges is used to control the rewiring that occurs during the rewriting. When

the correspondence between ports in the left- and right-hand sides of the rule is obvious we omit

the ports and edges involving the arrow node. The arrow node is used to avoid dangling edges

during rewriting (see [46, 29]). More details are given in Figure 2.2, where the arrow-edges are

dashed or dotted lines.

This definition generalises the original definition given in [6], by alowing case (2.) above. This

will allow us to easily define Interaction Nets as a particular case of port graph rewriting rules.

CHAPTER 2. BACKGROUND 21

Figure 2.2: Seven examples rules, different line types are used for clarity only. α is used to denote

a variable node and β denotes a variable port.

CHAPTER 2. BACKGROUND 22

Figure 2.2.a shows a rule that takes the three unconnected atoms needed for a water molecule

and creates the two necessary edges to connect both hydrogen atoms to the oxygen atom. Figure

2.2.b shows a rule that merges two nodes into one node, preserving the two edges by rewiring them

to different ports. Figure 2.2.c shows a rule that splits a node A into two D nodes while preserving

edges. Figure 2.2.d shows a rule that deletes a node and an edge and creates a new edge between

the remaining nodes. Figure 2.2.e shows a rule similar to the one in Figure 2.2.d but here the

bottom port of B must have an edge connecting it to any port on any node (expressed by using

the variables α and β) as opposed to the rule in Figure 2.2.d where we do not care if the bottom

port of B is connected to another port or not. Figure 2.2.e shows a rule that will rewire the graph,

taking whatever is connected to the result port and using an edge to connect it whatever the aux2

port is connected to. Figure 2.2.g shows a rule where a B node can be connected to a C node if

the former’s top port has its state attribute set to the value off. When the connection is made,

the top port’s state attribute is set to on. Figure 2.2.h changes an A node to a B node, and makes

sure that everything that was connected to the A node’s port is now connected to both ports of

the B node.

Definition 3. Let L⇒ R be a port graph rewrite rule and G a port graph. We say a match g(L)

of the left-hand-side is found if:

• There is an injective port graph morphism g from L to G; hence g(L) is a subgraph of G.

• For each port in L that is connected to no edges in L ⇒ R its corresponding port in g(L)

cannot be in the set of edges of G.

This last point will enable us to dictate the following about each port in the left-hand-side of

a rule:

• The port must be free. This is done by not connecting any edges (arrow-edges or otherwise)

to it.

• The port must be connected, done by using a variable node with one variable port and

connecting them together.

• The port can be either free or connected. This is done by connecting the port to a port on

the arrow-node. If this arrow node is also connected to another port then a rewiring will

happen (see below), if not then no rewiring will be done and the edge connected to this port

will be destroyed.

CHAPTER 2. BACKGROUND 23

Figure 2.3: Four examples of rules. α and β are variable labels.

Figure 2.3.a shows a rule where all the ports of the left-hand-side must be free. Figure 2.3.b

shows the same rule but here the port of the C node must be connected to something (expressed

by using a variable node and port) and in this case the something it is connected to will be rewired

to the top port of A. Figure 2.3.c is again the same rule but where we do not care whether the

port of the C node is connected or free but if it is connected then rewire that edge to the port on

the A node of the right-hand-side. Figure 2.3.d is the same as the previous rule but in this case,

no rewiring is done if the port of the C node is connected.

Definition 4. A rewriting step on G using L⇒ R, written G→L⇒R G′, that transforms G into

a new graph G′ obtained from G happens in four phases:

• The build phase where a redex g(L) is found in G and an instance of the port graph rule

L⇒ R is put into G. This creates the graph G1

• The matching phase where we replace the sub graph L from the added rule by the redex g(L),

preserving all the arrow-edges that connect to the arrow node. This creates the graph G2.

• The rewiring phase where we take each port on the arrow node connected to two arrow-edges

and if:

CHAPTER 2. BACKGROUND 24

– it is connected to a port p1 of a node on the left-hand-side and a port p2 of a node of

the right-hand-side we then take all the ports connected to p1 and connect them with an

edge to p2.

– it is connected to two ports p1 and p2 both on nodes on the left-hand-side we then take

all the ports that are connected to p1 and connect each of them to each port connected

by an edge to p2.

Af the end of this phase, all edges connected to the arrow node are deleted.

• The deletion phase simply deletes the arrow node and all the nodes from g(L) that weren’t

matched to a node with a variable label also removing any edges that were connected

to their ports, thus eliminating any dangling edges. This creates the graph final graph G′.

See Figure 2.4 and Figure 2.5 for a phase by phase application of the rewrite rule found in

Figure 2.2.d 2.2.e respectively on a port graph. Figure 2.6 shows a phase by phase application of

a rule with a variable label on one of its nodes: here the rule is forcing the top port of A to be

connected (and to rewire that connection to B in the rewrite step), the right port of A to be free,

and the bottom port of A to be either free or connected (but if it is connected, the edge will be

destroyed during the rewriting).

The nodes of the original port graph G will be drawn with dashed lines as a visual aid.

CHAPTER 2. BACKGROUND 25

Figure 2.4: A rewrite step showing all the phases of the rewriting using the rule in Figure 2.2.d on

a port graph.

CHAPTER 2. BACKGROUND 26

Figure 2.5: A rewrite step showing all the phases of the rewriting using the rule in Figure 2.2.e on

a port graph.

CHAPTER 2. BACKGROUND 27

Figure 2.6: A rewrite step showing all the phases of the rewriting using a rule with a variable node

label.

Several injective morphisms g from L to G may exist (leading to different rewriting steps); they

are computed as solutions of a matching problem from L to (a subgraph of) G. If there is no such

injective morphism, we say that G is irreducible by L ⇒ R. Given a finite set R of rules, a port

graph G rewrites to G′, denoted by G →R G′, if there is a rule r in R such that G →r G
′. This

induces a transitive relation on port graphs, denoted by →∗R. Each rule application is a rewriting

step and a derivation, or computation, is a sequence of rewriting steps.

A port graph on which no rule is applicable is in normal form. Rewriting is intrinsically non-

deterministic since it may be possible to rewrite several subgraphs of a port graph with different

rules or use the same one at different places, possibly getting different results.

CHAPTER 2. BACKGROUND 28

Summary

Port graphs present a powerful, versatile and intuitive modelling system for graphs and graph

rewriting. The notion of ports is easy to understand and can be applied to many fields intuitively

such as Chemistry (as protein receptors) and network modelling (as network ports) to name a few.

Since nodes and ports can have attributes, it is easy to store data within port graphs and used

with rewriting rules and the right kind of strategy the data can be used to guide the rewriting

(You can see examples of this using the Property(,) operator in Sections 6.6 and 6.7). The L⇒ R

notation for graph transformations is again intuitive and can be easily understood and used in

many fields; for instance chemical reactions are written with the same L ⇒ R notation. The

inherent non-determinism is also useful since a lot of modelling needs to take non-determinism into

account: in Section 6.6 pacman can sometimes move in more than one direction and so one should

be picked randomly. Further details and examples of port graphs can be found in Chapters 5 and

6 and in [10, 11].

2.1.2 Interaction Nets

Interaction nets were introduced by Lafont in 1990 [52] and later used as a target language for

implementation of efficient λ-calculus evaluators (see for instance [45, 56]). We give below a

brief description of this formalism. Interaction Nets have their own graphical convention used

throughout this section. A discussion on how Interaction Nets are a particular case of Port Graphs

is given at the end of the section, complete with examples of Interaction Net rules drawn as Port

Graph rules.

A system of interaction nets is specified by a set Σ of symbols with fixed arities, and a set

R of interaction rules. An occurrence of a symbol α ∈ Σ is called an agent. If the arity of α is

n, then the agent has n + 1 ports: a principal port depicted by an arrow, and n auxiliary ports.

Figure 2.7(a) shows a typical drawing of such an agent. Intuitively, a net N is a port graph (not

necessarily connected) where the nodes are agents. The ports that are not connected to another

agent are said to be free. The interface of a net is its set of free ports.

Figure 2.7: General format of an agent and an interaction rule.

Interaction Rules

Interaction rules are port graph rewrite rules where the left-hand side consists of two agents (α, β) ∈

Σ×Σ connected together on their principal ports (an active pair or redex) and the right-hand side

CHAPTER 2. BACKGROUND 29

is a net N . The diagram depicted in Fig. 2.7(b) shows the format of interaction rules (N can be

any net built from Σ).

Interaction rules must have the following two conditions:

• The left and right hand sides of a rule must have the same interface, that is to say that the

number of free ports on both sides must be equal.

• At most one rule can be given for each pair of agents (α, β).

The net N in an interaction rule (α, β) can contain occurrences of α or β and can also just be

a wiring (a term used to describe an edge and is mainly used for cases where the right hand side

of a rule is a subgraph containing only edges and no nodes. See Figure 2.9) as long as the number

of free ports in the left hand side is even. It is possible for the active pair to have no free ports, in

that case N may be (but not necessarily) empty.

A reduction using a rule (α, β) =⇒ N takes an occurrence of the active pair (α, β) and replaces

it by the net N . We can write W =⇒ W ′ if we can find an active pair (α, β) in W and an

interaction rule (α, β) =⇒ N such that W ′ is obtained by replacing the occurrence of the active in

W with N . We use =⇒ for a single interaction step and =⇒∗ for the transitive reflexive closure of

the relation =⇒.

Strong Confluence & Turing Completeness

Interaction nets are strongly confluent, that is to say that if in a net N two different reduction

N =⇒ N1 and N =⇒ N2 are possible then there exists a net M such that both N1 and N2 can

reduce to M in one step (meaning that both N1 =⇒ M and N2 =⇒ M are possible). Strong

confluence is due to the fact that during a reduction step, the interface is preserved. This means

that the reduction is local since the reduction doesn’t affect the rest of the net and each agent can

only be in one active pair at a time since it only has one principal port.

Interaction nets are also Turing complete as shown in Section 7.3 of [37].

Parallelism

The fact that reduction is local (see above) provides interaction nets with a very useful property:

parallelism. Since reduction doesn’t affect the rest of the graph (and the interface is always

preserved) if there is more than one active pair, it is possible to do their rewrite steps simultaneously.

Unlike most other computational models, the design of the code (or rewriting rules) do not need

to be adapted for parallelism, they work naturally since parallelism is an inherent property of

interaction nets.

Full Normal Form & Interface Normal Form

We say that an interaction net is in full normal form (also simply called normal form) if it has no

active pairs. While strong confluence dictates that there is only one normal form (assuming the

interaction net is terminating), there are clear multiple ways of getting to the normal form.

CHAPTER 2. BACKGROUND 30

In some contexts, for instance when using interaction rules to program functions, we need a

weaker notion of normal form corresponding to the notion of weak head normal form in λ-calculus.

Interface normal form, defined in [38], can be computed by a strategy which applies rules at the

interface (if possible) in order to minimise the length of the reduction sequence. Taken from [37]:

“Intuitively, an interaction net is in interface normal form when there are agents with principal

ports on all of the observable interface, or, if there are ports in the interface that are not principal,

then they will never become principal by reduction (since they are in an open path or a cycle).”

Arithmetic Example

Natural numbers can be represented using 0 and the successor function. For instance 2 can be

written as S(S(0)). For the addition operator, we can specify the following:

• add(0, y) = y

• add(S(x), y) = S(add(x, y))

We can code the following using three types of agents (figure 2.8) 0, S and add.

Figure 2.8: Three agent types needed to code addition.

We then create two interaction rules, one for add(0, y) = y (figure 2.9) and one for

add(S(x), y) = S(add(x, y)) (figure 2.10).

Figure 2.9: First add rule.

CHAPTER 2. BACKGROUND 31

Figure 2.10: Second add rule.

Consider the starting net in figure 2.11 representing 2 + 1; Figure 2.12 shows the application

using the second rule twice and then one application of the first rule. The result we get is S(S(S(0)))

which is 3.

Figure 2.11: Starting net expressing 2 + 1.

CHAPTER 2. BACKGROUND 32

Figure 2.12: Three successive rewrites.

We can further extend this example to incorporate multiplication by adding three more agents

(figure 2.13): the ε, δ and mult agents:

• ε is called the erasing agent and erases the agent it is interacting with and then propagates

to the erased agent’s auxiliary ports (figure 2.14).

• δ is called the duplicator agent and copies any agent it is interacting with then propagates

to the copied agent’s auxiliary ports. (figure 2.15).

• mult, like add is the agent used to represent multiplication.

Figure 2.13: Three agent types needed to code multiplication.

CHAPTER 2. BACKGROUND 33

Figure 2.14: The ε rule.

Figure 2.15: The δ rule.

To implement multiplications we can represent the following:

• mult(0, y) = 0 (figure 2.16)

• mult(S(x), y) = add(mult(x, y), y) (figure 2.17)

Figure 2.16: The first mult rule.

CHAPTER 2. BACKGROUND 34

Figure 2.17: The second mult rule.

Interaction Nets as a Particular Case of Port Graphs

Interaction nets can be implemented with port graphs since interaction net agents have a set of

distinct ports, something that can be represented in a port node. The principal port of an agent

can simply be a particular port of a port node that is labelled principal.

Most interaction net rules can be written as port graph rules such as the rule in Figure 2.18.

Rules that use wiring (like in Figure 2.9) can also be written with port graph rewriting rules (with

the extension definition given earlier). The PORGY tool allows the creation of right hand sides

that just contain wirings (visually, this is represented by using a specific colour for those edges

when drawing the rule). For example the rule in Figure 2.9 is represented as a port graph rule in

Figure 2.19.

Figure 2.18: The rule in Figure 2.16 redrawn as a port graph rule.

CHAPTER 2. BACKGROUND 35

Figure 2.19: The rule in Figure 2.9 redrawn as a port graph rule.

Summary

Interaction nets provide an interesting way to model rewriting with a strong restriction on rules

that provides strong confluence and parallelism.

Interaction rules can be seen as a particular kind of port graph rewriting rules with constraints

that ensure good computational properties: pattern-matching is particularly easy in interaction

nets, since patterns are graphs containing just two nodes, and the transformations are local and

strongly confluent.

Chapter 3

Related Work

3.1 Graph and Hypergraph Rewriting

There exists different formalisms to describe and represent graphs and graph transformations.

Each formalism has a different set of properties that makes it better suited to certain applications.

Below is a description and review of some of the main formalisms that exist.

3.1.1 Hypergraphs and Hyperedge Replacement

Hypergraphs

Hypergraphs[34] are graphs where an edge can connect any number of vertices. Let C be an

alphabet such that every symbol A ∈ C has a type type(A) ∈ N, hypergraphs are defined as a

tuple (V,E, att, lab, ext) where (taken from [5]):

• V is the set of vertices of the hypergraph

• E is a finite set of hyperedges.

• att: E → V ∗ is a mapping assigning a sequence of attachment nodes att(e) to each e ∈ E

• lab: E → C is a mapping that labels each hyper edge such that type(lab(e)) = |att(e)|

• ext ∈ V is a sequence of pairwise distinct external nodes.

For example, we define the V and E of a hypergraph H drawn in Figure 3.1 as:

V = {v1, v2, v3, v4, v5, v6} and E = {e1, e2, e3}

where e1 = {v1, v2, v3}, e2 = {v1, v3, v5}, e3 = {v5, v6}

Hyperedge Replacement

In [5], hyper edge replacement is described as:

Let H, H ′ be hyper graphs, e ∈ EH with typeH(e) = type(H ′). Then the replacement of e by

H ′ in H yields the hyper graph H[e/H ′], which is obtained as follows:

36

CHAPTER 3. RELATED WORK 37

Figure 3.1: An example hypergraph.

• Build H \ e by removing e from H.

• Take the disjoint union of H\e and H ′, in other words rename nodes and edges appropriately;

the external nodes are those of H.

• For all i ∈ 1, ..., typeH(e) identify the i-th external node of H ′ with the i-th attached node of

e.

Also, [34] states that:

Hyperedge replacement enjoys some nice properties well-known from other rule-based for-

malisms. First of all, we have a sequentialization and parallelization property. It does not matter

whether we replace some hyperedges of a hypergraph one after another, or simultaneously. The

second property is confluence. Hyperedges of a hypergraph can be replaced in any order, without

affecting the result. (In fact, this follows already from the sequentialization and parallelization

property. If we replace hyperedges simultaneously there is no order among them at all.) The last

and maybe most important property is associativity. If a hyperedge is replaced and afterwards

a hyperedge of the new part is replaced with a third hypergraph, the same is obtained by first

replacing the latter hyperedge and then replacing the first one with the result.

While hyper graphs and hyperedge replacement can be used to model a diverse range of systems,

it is not as intuitive as using a graph system with ports. Ports can be simulated by using hyperedges

as the nodes and vertices to connect these nodes together but make it unnecessarily complicated

and unintuitive compared to port graphs. The confluence and inherent parallelism found in hyper

edge replacement (much like interaction nets) is a very useful property to have since strategy

language defined in Section 5 supports application of rules but again, if such properties are needed,

a specific case of port graphs can be used (for example, it is possible to simulate interaction nets

using port graphs).

3.1.2 Graph Grammars

Graph Grammars were designed as an extension of formal grammars on strings to grammars on

graphs.

CHAPTER 3. RELATED WORK 38

Inspired by [35], a graph grammar is a grammar rewriting system expressed as a quadruple:

GG = (N,T, P, S) where given an arbitrary but fixed set of labels C:

• N ⊆ C is a set of nonterminals.

• T ⊆ C is a set of terminals with T ∩N = ∅.

• P is a finite set of productions over N .

• S ∈ N is the start graph.

The language L(GG) generated by GG is LS(GG) (where for all A ∈ N , LA(GG)) is a set of

all terminally labelled graphs that are derivable from S by applying productions.

Graph grammars can take the role of generation where they take the starting graph and use

the productions to generate a final graph. They can also take the role of recognition where a final

graph is given and the graph grammar sees if that graph can be created from the starting graph

using the given rewrite rules.

With Graph Grammars, the focus is more to generate a language or to verify if a particular

graph is a valid for a certain grammar. Also, there is no control over the productions in P and

how and when they are applied.

3.1.3 Interaction Nets

See Section 2.1.2 for a definitions and explanation of interaction nets.

Interaction nets hold some interesting properties like strong confluence and parallelism but

are more low-level than port graphs and so they are not as intuitive to use, that is to say that

the strong restriction of the principal port does give interaction nets some interesting features but

makes creating some rules more complex because of this restriction. Also, since interaction nets are

a particular case of port graphs (a restriction on rewriting rules), we can easily model interaction

nets using port graphs if needed.

3.1.4 Summary

Port graphs give us a more natural and easy to understand representation of graphs and graph

rewriting over other formalisms. While other formalisms like hypergraphs and hyperedge replace-

ment have useful properties such as parallelism, those properties can be simulated with port graphs.

3.2 Graph rewriting Tools

Several tools are available to create and edit graphs, and some of them allow users to model

graph transformations. Below we review some of the systems that share some common goals with

PORGY (described in Chapter 7) .

CHAPTER 3. RELATED WORK 39

3.2.1 GROOVE

GROOVE [68] is centred around the use of simple graphs for modelling the design-time, compile-

time, and run-time structure of object-oriented systems. The model transformations and the

operational semantics is defined on graph transformations. Model checking is used to verify model

transformations and dynamic semantics through an (automatic) analysis of the resulting graph

transformation systems. GROOVE’s rewriting rules are not defined as L ⇒ R but as one graph

where the nodes and edges can be one of four types:

• readers : these need to exist to apply the rule and survive the rewriting.

• erasers : these must also exist to apply the rule but are removed from the graph during the rewriting.

• creators : that are created during the rewriting

• embargoes : that mustn’t exist for the rewriting to happen.

While this is equivalent to a L⇒ R definition of rules, it appears more complicated to understand

since it has essentially merged the L and R graphs into one same graph and uses colour coding to

show what is needed,banned, added and removed.

The GROOVE tool set includes an editor for creating graph production rules, a simulator

for visually computing the graph transformations induced by a set of graph production rules, a

generator for automatically exploring state spaces, a model checker for analysing the resulting

graph transformation systems and an imaging tool for converting graphs to images. Visualisation

is not the main objective, and after each rewrite step the user must update the layout of the graph

by hand. GROOVE can simulate 20,000 states in 30 minutes and is therefore useable for large

systems (much like PORGY) but doesn’t allow us to do complex renderings in 3D which would

allow for some interesting and useful visualisations.

GROOVE permits to control the application of rules, via a control language with sequence,

loop, random choice, try()else() and simple (non recursive) function calls. These are similar to

PORGY’s constructs, but the main difference is that GROOVE’s language does not include the

notion of position, it is not possible to specify a focus (and evolve and move this focus) for the

application of rules within the language. Tracing - an important feature of PORGY - is possible

with GROOVE through state space exploration. A unique feature of GROOVE is the embargoes

type found in the rewrite rules: it is possible to explicitly states within a rule that a particular

subgraph mustn’t exist for the rule to be applied. Port graphs do not have this feature written

within its rule formalism but the strategy language described in Chapter 5 (with the use of the

Property(,) operator and the if()then()else() construct) allows us to do the same.

3.2.2 Fujaba

The Fujaba [61] Tool Suite is an Open Source CASE tool providing developers with support for

model-based software engineering and re-engineering. The Fujaba project aims at developing and

extending the Fujaba Tool Suite and thus offering an extensible platform for software engineering

researchers. It combines UML class diagrams [41, 23], UML activity diagrams, and a graph trans-

formation language (so called Story Patterns) and offers a formal, visual specification language

CHAPTER 3. RELATED WORK 40

that can be used to completely specify the structure and behaviour of a software system under de-

velopment. Graphs and rules are used to generate Java code. Fujaba is heavily focused UML based

models and therefore doesn’t offer the versatility to model diverse systems, which is an important

aspect of the PORGY tool and the strategy language described in Section 5. Fujaba has a basic

strategy language, including conditionals, sequence and method calls. There is no parallelism, and

again one of the main differences with the strategy language described in Section 5 is that Fujaba

does not include a notion of location to guide the rule application.

Fujaba’s interface is quite visual allowing users to draw UML diagrams intuitively within its

GUI, an important feature for PORGY and graphPaper that will decrease the learning curve for

less technically minded users.

3.2.3 AGG

AGG [36] is a rule based visual language supporting an algebraic approach to graph transformation.

It aims at the specification and prototypical implementation of applications with complex graph-

structured data. AGG may be used as a general purpose graph transformation engine in high-level

JAVA applications employing graph transformation methods. The application of rules can be

controlled by defining layers and then iterating through and across layers, simulating priority

application. No further control seems possible.

Rules can also have negative application conditions where a rule can only be applied if a certain

structure (subgraph) doesn’t exist, something that can be simulated with the strategy language

defined in Chapter 5 using the Property(,) operator and the if()then()else() construct.

The tool itself allows users to create graphs and rules and code Java expressions. It also

represents the interpretation and validation visually.

Again, there is no notion of position and there is no control on the search for redexes.

3.2.4 PROGRES

The PROGRES [69] project works on the theoretical foundations as well as the practical implemen-

tation of an executable specification language based on graph rewriting systems (graph grammars).

The aim is to combine EER[60]-like and UML-like class diagrams for the definition of complex ob-

ject structures with graph rewrite rules for the definition of operations on these structures.

The PROGRES editor is both a graphical and a textual editor since it mixes more graphs and

text in its language. It also has a type checker for the language’s static semantics.

PROGRES allows users to define the way rules are applied (it includes non-deterministic con-

structs, sequence, conditional and looping) but it does not allow users to specify the position where

the rule is applied. It is a very expressive language and includes a tracing functionality through

backtracking, something very useful for debugging and static analysis.

3.2.5 GrGen

GrGen.NET [44] is a programming tool for graph transformation designed to ease the transforma-

tion of complex graph structured data as required in model transformation, computer linguistics,

CHAPTER 3. RELATED WORK 41

or modern compiler construction, for example. It is comparable to other programming tools like

parser generators which ease the task of formal language recognition or databases which ease the

task of persistent data storage and querying.

The tool works mainly from textual files and then transforms that text into graphs. Our

motivations are different: we are looking for a more intuitive method where users can create the

graphs directly into a visual environment instead of learning a textual language to represent graphs.

GrGen’s rule application language includes sequential, logical and iterative control which makes

it Turing complete. Users can also use variables for sub graphs involved and resulting from rewrites.

Some low level positioning and focusing (defined in Section 5.1.2) can be achieved with the use of a

visited property. These properties can be applied to nodes and edges and can be used in rules. Our

strategy language and rule system doesn’t use properties in the rules themselves, but properties

can be used to filter the main graph into subgraphs that can then be used for focusing.

The tool performs well in terms of the benchmark shown in [44] which is essential for pattern

matching in large graphs. Fast pattern matching is a very important feature and is a large priority

for the PORGY tool.

3.2.6 GReAT

GReAT (Graph Rewriting and Transformation) [16] is a tool for building model transformation

tools. First, one has to specify the metamodels of the input and target models using UML style

class diagrams and give rules to specify the transformation. Using only UML style class diagrams

makes it difficult to use the tool for different kinds of modelling such as chemical reactions and

functional programming.

Rules are pairs of typed, attributed graphs. The pattern-matching algorithm always starts

from specific nodes called “pivot nodes”. Rule execution is sequenced and there are conditional and

looping structures allowing some basic control.

3.2.7 Summary

While all these tools have interesting features, they are all very specific to a certain application

such as UML diagrams and object-orientated systems. Our aim with PORGY is to create a tool

that can handle a varied range of models, anything from arithmetic to constructing fractals.

These tools also have a sometimes limited control mechanism and none seem to really take

positioning in a graph into account. The strategy language designed to go with PORGY has

been built with powerful yet intuitive and well established strategic constructs and has a focus on

positioning within the graphs and the possibility of designing traversals for non-tree graphs.

3.3 Strategic Term & Graph Rewriting Tools

3.3.1 ELAN

ELAN[24] is a rule-based programming language controlled by strategies that rewrites on terms.

CHAPTER 3. RELATED WORK 42

ELAN has control methods such as sequential composition, iteration, deterministic and non-

deterministic choice operators to help guide the rewriting.

The main originality of ELAN is the ability to see if a function returns only one, at least one

or many results.

In ELAN, a rule is the most elementary strategy (called a primal strategy) and operators

exists (some explained below) that take strategies (primal or not) as arguments to form an bigger

strategy.

Some variable arity operators like dk(S1, ..., Sn) (don’t know choose) and dc(S1, ..., Sn) (don’t

care choose) return a set of results for each strategy S and picks one non-failing strategy and

returns all its results respectively. Such operators are useful as All and One strategic concepts and

can be used for traversals of terms.

The first(S1, ..., Sn) operator selects the first strategy that won’t fail and returns all its results,

allowing the user to prioritise certain strategies over others.

ELAN also has a backtracking ability to help with the non deterministic nature of rule-based

programming.

3.3.2 TOM

TOM[17] is a language that extends JAVA, providing it with high level constructs to model rewrit-

ing concepts. The motivation behind TOM was to allow large scale applications to use rewriting

techniques.

TOM was created after years of developing ELAN with a priority on integration, in this case

with JAVA. The %match construct is added into JAVA to enable users to use rewriting. %match

takes a list of expressions and contains a list of rules. Rules are defined by:

• a left hand side built upon constructors and fresh variables.

• a right hand hand side that is not a term, but a JAVA statement that is executed when

the pattern matches the subject. The backquote construct (‘) allows terms to be built and

returned if needed.

An example from [17] showing the code needed to represent addition:

public Nat plus(Nat t1, Nat t2) {

%match(t1,t2) {

x,zero() -> { return ‘x; }

x,suc(y) -> { return ‘suc(plus(x,y)); }

}

}

To control the rewriting, TOM is inspired by ELAN[24] and Stratego[75][26] and uses

a high-level strategy language defined by combining low-level strategic primitives such as

Sequence(s1,s2), Choice(s1,s2), All(s) and One(s). Using these primitives, constructs such

as Try(s) and Repeat(s) are possible, giving TOM a powerful and versatile control method.

CHAPTER 3. RELATED WORK 43

With TOM, the notion of position is more trivial that the notion defined in Chapter 5 since we

are always dealing with terms and traversals such as TopDown can be easily created.

Because TOM is added into JAVA and deals with terms, it is entirely textual. This means

that while it is possible to model visual things such as chemical reactions, it isn’t very intuitive to

define the rules and there is no built in graphical output to visualise and analyse the results.

3.3.3 Stratego

Stratego[75, 26] is a language and toolset for program transformation.

Similarly to TOM, primitive strategic constructs (such as sequence, negation, choice and re-

cursive closure) allow users to create more complex strategies. Added to those are term traversal

primitives that deal with the notion of position within terms.

Since Stratego deals with terms, all rules and strategies are purely textual and - much like

TOM- the modelling of more visual systems is possible but not intuitive or efficient.

3.3.4 GP

GP [67] is a rule-based, non-deterministic programming language. Programs are defined by sets

of graph rewriting rules and a textual expression that describes the way in which rules should

be applied to a given graph. Rules are given names (and both nodes and edges can have labels,

and labels could be constants or variables, ie we can define rule “schemes” with conditions on the

instantiation of labels).

The simplest expression is a set of rules, and this means that any of the rules can be applied

to rewrite the graph. The language has three main control constructs: sequence, repetition and

conditional (if-then-else), and it has been shown to be Turing complete. GP has no built in notion

of position but can use variable labels in rules as a low level alternative. (See Sierpinski’s Triangle

Generation example in [57] and [71]).

GP has a JAVA based graphical editing environment that allows the creation, editing and

execution of graphs, rules and strategies. The editor is purely a front end to facilitate creation and

design since it then converts whatever the user has created into GP’s textual language.

GP uses the York Abstract Machine[58] (YAM) to execute its programs. YAM is a backtrack-

ing graph-transformation machine which means that if at some point no rule can be applied, it

backtracks to the nearest point where there was a choice of redex (users cannot easily handle the

derivation tree or change the backtracking algorithm). YAM allows for reasonably fast execution,

only slowing down if there is a large non-deterministic search space (something that can be avoided

by programming carefully).

3.3.5 Summary

The described strategic tools each provide a strong strategy language to control rewriting. From

the term rewriting strategies, we can take a lot of inspiration for control operators but not all

their notions can be directly applied to graphs (especially when dealing with non-tree graphs); for

example traversals.

CHAPTER 3. RELATED WORK 44

GP provides a very powerful control mechanism and can use labels to create traversals which,

while functional, is not as direct of an approach as the one seen in Chapter 5 and could possibly

have a steeper learning curve for users with less programming experience. For example, compare

the Sierpinski’s Triangle Generation using GP in [67] with the one described in Section 6.5.

Chapter 4

graphPaper : A Tool to Create

Graph Rewriting Systems

4.1 Description

graphPaper[39] is a cross-platform tool designed to create and edit port graph rewriting systems

and its rules in a visual and intuitive way. Its purpose is to provide a focused environment to

create graphs and rules before transferring them to PORGY to execute rewriting and strategies.

The following sections will explain the design philosophy behind graphPaper and how the user

interacts with the tool. The implementation is then described as well as its connection to the

PORGY tool described in Chapter 7.

4.2 Design Philosophy

In the past few years, new technologies have shown that new Human Interface Devices (HID)

can be an efficient way of dealing with digital information. Apple’s touch screens used in their

phones and tablets give a very direct and physical method to interact with data on a screen and

Nintendo has shown with the Wii that controls that mimic real life motions are very accessible.

These methods of interaction are very intuitive and have been hugely popular across all sorts of

demographics since it lets users interact with on screen data in a similar way as they would with

the same data in a non-digital form, for instance pushing a document on a touchscreen to pan the

view or swinging a remote to make a character swing a sword.

This is the driving force behind the graphPaper tool: the creation process of a graph and its

rules should be as similar as possible to how we could create them on paper but with the added

dynamic benefits of computers.

4.2.1 Interaction

The following section will describe how the user will interact with graphPaper to create, edit and

delete nodes, ports and edges, and to create rules.

45

CHAPTER 4. GRAPHPAPER : A TOOL TO CREATE GRAPH REWRITING SYSTEMS 46

For port graphs, nodes, ports and edges are the three types of data that the user will interact

with. This allows the tool to have a simple interface. There is no need to have a toolbar or icons

to select which type of data we want to interact with. It is possible for the tool to deduce what

the user is interacting with based on the context of the interaction. For example, edges need to be

created between ports so cannot be created independently. This means that if the user is trying

to work on an empty part of the view, they are trying to interact with nodes (in this case, create

one). When the user tries to interact with ports of a node, then we know that the goal is to create

or edit edges to and from that node.

Creating, editing and deleting can be entirely done using a mouse, the keyboard only used to

type in names of nodes and ports. We assign the left mouse button as the drawing button. The

user only needs to draw two different shapes: a circle or a line; and the position and context of the

shape will determine what intention the user had in mind.

Circle Shape

• A circle drawn on an empty part of the view that doesn’t contain any elements will create a

new node. Users can immediately type after creating a node to name it.

• A circle drawn that contains nodes will select those nodes so that the use can move them.

Line Shape

• A line drawn from inside a node to outside the node will create a port where the line intersects

with the circumference of the node.

• A line drawn from an empty area outside a node into the node and through a port will delete

the port.

CHAPTER 4. GRAPHPAPER : A TOOL TO CREATE GRAPH REWRITING SYSTEMS 47

• A line drawn from a port to a port will create an edge between both ports.

• A line starting and ending in an empty area will delete any nodes or lines it crossed with.

Automation

graphPaper automates or enhances certain interactions:

• Renaming a port will rename it on all nodes of the same type. The same concept applies to

deleting nodes.

• Deleting nodes with edges connected to its ports will delete the edges automatically.

• Double-clicking on an empty space will create a node of the same type as the last created

node. Doing the same on a node or port will allow the user to change its name.

Right Mouse Button

The right mouse button is used for moving either elements of the graph or moving the view. Right-

clicking on a node or port will allow the user to move it. If a node is right-clicked that is part of a

selected group, the entire group is moved. Right-clicking on an empty part of the view and then

moving the mouse pushes the view in that direction. Zoom is also possible using a mouse wheel.

Rules

For rules, users create a node and name it an arrow node. This creates a box with the arrow node

in the middle. They can then add all the nodes and edges on either side of this node to create the

left hand side and right hand side, including interface rewiring. The box expands automatically to

allow larger rules and edges automatically go through the arrow node if they connect a left hand

side node to a right hand side node. Moving a node from one side to the other of the arrow node

will update and change its edges to rewiring edges if needed. Figure 4.1 shows a mockup of a rule

in graphPaper.

CHAPTER 4. GRAPHPAPER : A TOOL TO CREATE GRAPH REWRITING SYSTEMS 48

Figure 4.1: A rule in graphPaper.

4.2.2 Display

The method of interaction described above require a very minimal interface: icons for saving and

loading and a set of icons for copy/pasting and undo/redoing. This provides a very clutter-free

space to focus on creating graphs and rule.

Information is also displayed depending on context. While node names are always shown, port

names only appear if the mouse cursor is near the port’s node.

Colours are used to easily distinguish ports from their nodes and rewiring edges are drawn as

dotted lines to differentiate them from normal edges.

Specific interaction net features are implemented that check the left hand side of a rule only

contains two agents connected by their principal ports and that the interface is preserved.

4.3 Implementation and PORGY

graphPaper is currently being implemented in C++ using the SDL libraries1 to ensure the tool

is cross-platform. OpenGL2[70] is used to draw the graphs efficiently and to enable effects like

smooth zooming. Graphs and rules are saved in a graphPaper format and can also be exported in

the TULIP graph format to be easily imported into PORGY as a starting graph and a collection of

rules (this is done using the TULIP libraries). Information about the development of graphPaper

can be found at [3].

1http://www.libsdl.org/
2http://www.opengl.org/

Chapter 5

Strategy Language

5.1 Introduction

We introduce the concept of graph program and give the syntax and semantics of the strategy

language. In addition to the well-known constructs to select rewrite rules, the language provides

primitives to focus on specific positions on the graph that are selected or banned for rewriting.

Focusing is useful to program graph traversals, for instance, and is a distinctive feature of the

language.

5.1.1 Located Graphs

Definition 5. A located graph GQ
P consists of a port graph G and two distinguished sets of nodes P

and Q of G, called respectively the position subgraph, or simply position, and the banned subgraph.

In a located graph GQ
P , P represents the set of nodes of G where rewriting steps may take place

(i.e., P is the focus of the rewriting) and Q represents the set of nodes of G where rewriting steps

are forbidden. We give a precise definition below; the intuition is that subgraphs of G that overlap

with P may be rewritten, if they are outside Q. When applying a port graph rewrite rule, not only

the underlying graph G but also the position and banned subgraphs may change. A located port

graph rewrite rule, defined below, specifies two disjoint sets of nodes M and N of the right-hand

side R that are used to update the position and banned subgraphs, respectively. If M (resp. N)

is not specified, R (resp. the empty graph ∅) is used as default. Since P and Q are sets of nodes

of G, they can be considered as subgraphs of Gcontaining only nodes and no edges. The same can

be said of M and N . Below, the set operators union (∪), intersection (∩) and complement (\, also

known as set difference) apply to graphs considered as sets of nodes.

5.1.2 Located Port Graph Rewrite Rule

Definition 6. A located port graph rewrite rule is given by a port graph rewrite rule L⇒ R and

two disjoint subgraphs M and N of R. It is denoted (L⇒ R)NM . We write GQ
P →

g

(L⇒R)NM
G′

Q′

P ′ and

say that the located graph GQ
P is rewritten to G′Q

′

P ′ using (L ⇒ R)NM at position P avoiding Q, if

G→L⇒R G′ with a morphism g such that g(L) ∩ P is not empty and g(L) ∩Q is empty; the new

49

CHAPTER 5. STRATEGY LANGUAGE 50

position P ′ is then defined as P ′ = (P \ g(L))∪ g(M); the new banned subgraph Q′ is then defined

as Q′ = Q ∪ g(N).

In general, for a given rule (L⇒ R)NM and located graph GQ
P , more than one morphism g, such

that g(L) ∩ P is not empty and g(L) ∩ Q is empty, might exist (i.e., several rewriting steps at

P avoiding Q might be possible). Thus, the application of the rule at the position P avoiding Q

produces a set of located graphs.

5.1.3 Graph Programs

Definition 7. A graph program is given by a set of located port graph rewrite rules R, a strategy

expression S (built from R using the grammar below) and a located graph GQ
P . It is denoted by[

SR, G
Q
P

]
, or simply

[
S,GQ

P

]
when R is clear from the context.

The formal semantics of a graph program will be given below, using an Abstract Reduction

System [72, 50, 25]. The idea is to build a set of rewrite derivations out of
[
S,GQ

P

]
according to

the strategy S (i.e, a derivation tree).

A graph program [S,GQ
P] may define a non-terminating computation if there is an infinite

derivation (written as ⊥, an undefined result) that is a part of its result set. All terminating

computations will produce values of the form [Id, GQ
P] or [Fail, GQ

P] (See Property 2 in Section 5.4).

Definition 8. Given a graph program [S,GQ
P] and its derivation tree, the result set is the multiset

of values ([Id, G′Q
′

P ′] or [Fail, G′
Q′

P ′]) in the tree, together with ⊥ if there is an infinite branch. We

say that a result set is a success if there exists at least one graph program [Id, G′Q
′

P ′] (for some G′Q
′

P ′)

or is a failure otherwise.

Definition 9. A graph program [S,GQ
P] is strongly terminating if there are no infinite branches in

its derivation tree. It is weakly terminating if there is at least one finite branch.

Definition 10. isSuccess() is a function that takes a graph program and returns:

• True: if the result set of the graph program contains at least one graph program of the type

[Id, GQ
P].

• False: if the result set of the graph program contains no graph programs of the type [Id, GQ
P].

The isSuccess() function is computable only if its input graph program is strongly terminat-

ing. In implementations, backtracking will be used to ensure that even if a strategy is weakly

terminating, we will have computed a partial result set which only contains values.

5.2 Syntax

The syntax of the strategy language is given in Figure 5.1. The strategy expressions used in graph

programs are generated by the non-terminal S. A strategy expression combines rule applications,

generated by A, and focusing operations, generated by F . The application constructs and some

CHAPTER 5. STRATEGY LANGUAGE 51

Let L,R be port graphs; F a set of nodes of G; M,N positions; ρ is a Property.

(Focusing) F := CrtGraph | CrtPos | CrtBan | AllSuc(F) | OneSuc(F)

| NextSuc(F) | Property(ρ, F) | F ∪ F | F ∩ F | F \ F | ∅

(Transformations) T := (L⇒ R)NM | (T ‖ T)

(Applications) A := Id | Fail | T | one(T)

(Strategies) S := A | S;S

| while(S)do(S) | (S)orelse(S)

| if(S)then(S)else(S) | isEmpty(F)

| setPos(F) | setBan(F)

Figure 5.1: Syntax of the strategy language.

Let n ∈ ∇N , attribute1 ∈ ∇A , attribute2 ∈ ∇A ∪ {∗},

port ∈ ∇P and value ∈ ∇V ∪ {∗}. (See Section 2.1.1)

(Properties) ρ := n

| attribute1 = value

| port.attribute2 = value

Figure 5.2: Syntax of the Property language.

of the strategy constructs in the language are strongly inspired from existing rewriting strategy

languages such as Elan [24], Stratego [75] and Tom [17] and GP[67].

We describe the constructs informally first, and give their formal semantics in Section 5.3.

5.2.1 Focusing

These constructs are functions from graph programs to port graphs: they apply on a graph program[
SR, G

Q
P

]
and return a set of nodes of G. They are used in strategy expressions to change the

positions P and Q where rules apply and to specify different types of graph traversals. In the

following, F is a set of nodes of G.

• CrtGraph returns a set containing all the nodes in graph G.

• CrtPos returns a set equal to the current position subgraph P in the located graph.

• CrtBan returns a set equal to the current banned subgraph Q in the located graph.

• AllSuc(F) returns the set of nodes consisting of all the immediate successors of the nodes in

CHAPTER 5. STRATEGY LANGUAGE 52

F , where an immediate successor of a node v is a node that has a port connected to a port

of v.

• OneSuc(F) returns a set of nodes consisting of one immediate successor of a node in F , chosen

non-deterministically.

• NextSuc(F) computes successors of nodes in F using for each node only a subset of its ports;

we call the ports in this distinguished subset the next ports (so NextSuc(F) returns a subset

of the nodes in AllSuc(F)).

• Property(ρ, F) is a filtering construct, that returns a set of nodes of G containing only the

nodes from F that satisfy the decidable property ρ. It typically tests a property on nodes or

ports, for instance:

– Property(Add,F) returns all the nodes of F labelled "Add".

– Property(Principal.Active = True,F) returns all the nodes of F that have a port la-

belled "Principal" that has an attribute labelled "Active" that is set to the value "True".

– Property(Colour = ∗,F) returns all the nodes of F that have an attribute named

"Colour", regardless of its value.

– Property(Auxiliary.∗ = ∗,F) returns all the nodes of F that have a port labelled "Aux-

iliary", regardless of any attributes and values that port might have.

We can then combine multiple Property(,) operators with a ∩ (see below) to filter multiple

times. For example Property(Mult,F) ∩ Property(Aux.Active = True,F) returns all the

nodes in F that are labelled "Mult" and that have a port labelled "Aux" that has an attribute

labelled "Active" that is set to the value "True".

• ∪ , ∩ and \ are the standard set theory operators that compute new expressions from the

previous constructs.

• ∅ returns the empty set.

5.2.2 Transformations

The focusing subgraphs P and Q in the target graph and the distinguished graphs M and N in a

located port graph rewrite rule are original features of the language. A rule can only be applied if

at least a part of the redex is in P and cannot be applied on Q.

• (L ⇒ R)NM represents the application of the rule L ⇒ R at the current position P and

avoiding Q in GQ
P . (L⇒ R)NM returns Id if the rule can be applied and Fail if it can’t.

• T ‖ T ′ represents simultaneous application of T and T ′ on disjoint subgraphs of G and

returns Id only if both applications are possible simultaneously and Fail otherwise.

CHAPTER 5. STRATEGY LANGUAGE 53

5.2.3 Applications

• Id is a basic strategy that never fails and leaves the graph unchanged.

• Fail is also a basic strategy but leaves the graph unchanged and returns failure.

• T will compute all the possible applications of the transformation on the located graph,

creating a new located graph for each application. In the derivation tree, this will create as

many children as there are possible applications.

• one(T) will non-deterministically compute only one of the possible applications of the trans-

formation and ignore the others.

5.2.4 Strategies

In this section, we describe the constructs used to build strategies.

• The expression S;S′ represents sequential application of S followed by S′, as usual.

• while(S)do(S′) keeps on sequentially applying S′ to GQ
P while the expression S rewrites to

Id on a copy of GQ
P . If S returns Fail, then Id is returned.

• (S)orelse(S′) applies S if possible, otherwise applies S′ and returns Fail if both S and S′

fail.

• if(S)then(S′)else(S′′) checks if the application of S on (a copy of) GQ
P returns Id, in which

case S′ is applied to (the original) GQ
P , otherwise S

′′ is applied to the original GQ
P .

• isEmpty(F) returns Id if F returns an empty graph and Fail otherwise. This can be used for

instance inside the condition of an if or while, to check if the strategy makes P empty or

not.

• setPos(F) takes the graph resulting from a focusing expression and sets the current position

subgraph P to that graph. setPos() always returns Id.

• setBan(F) takes the graph resulting from a focusing expression and sets the current banned

subgraph Q to that graph. setBan() always returns Id.

5.3 Semantics

Each syntactic group (Focusing, Transformations, Applications and Strategies) requires semantics.

The Focusing operators require functions to compute graphs (see Section 5.3.1) while the other

syntactic groups use small step semantics on configurations in the form of rules (see Section 5.3.2).

5.3.1 Focusing Operators

The focusing operators defined by the grammar for F in Fig. 5.1 have a functional semantics. They

apply to the current located graph, and compute a set of nodes G′ (i.e., they return a set of nodes

of G). For instance, CrtGraph applied to GQ
P returns a set containing all nodes of G.

CHAPTER 5. STRATEGY LANGUAGE 54

We define below the result of each focusing operation on a given located graph.

CrtGraph(GQ
P) = G CrtPos(GQ

P) = P CrtBan(GQ
P) = Q

AllSuc(F)(GQ
P) = G′ where G′ consists of all immediate successors of

nodes in F .

OneSuc(F)(GQ
P) = G′ where G′ consists of one immediate successor of

a node in F , chosen non-deterministically.

NextSuc(F)(GQ
P) = G′ where G′ consists of the immediate successors,

via ports labelled “next”, of nodes in F .

Property(ρ, F)(GQ
P) = G′ where G′ consists of all nodes in F satisfying ρ.

If AllSuc() or OneSuc() have no immediate successors, NextSuc() is not given any nodes with

ports labelled next, or Property(,) is given a set of nodes that don’t satisfy ρ, then the empty set

∅ is returned.

We have three cases for ρ:

• n (where n ∈ ∇N)

that returns all the nodes in F that are labelled n.

• attribute1 = value (where attribute1 ∈ ∇A and value ∈ ∇V ∪ {∗})

that returns all the nodes in F that have attribute1 as an attribute and where its value is

equal to value. If value is ∗ then it will return all nodes that have attribute1 as an attribute

regardless of its value.

• port.attribute2 = value (where port ∈ ∇P , attribute2 ∈ ∇A ∪ {∗} and value ∈ ∇V ∪ {∗})

that returns all the nodes in F that have a port labelled port and that port has an attribute

labelled attribute2 that has the value value. If value is ∗ then the value is ignored. If both

attribute2 and value are ∗ then they are both ignored and the nodes that are returned are

all the nodes that have a port labelled port.

5.3.2 Transformation, Applications and Strategy Operators

Small Step Semantics and Configurations

The constructs in the grammars for T , A and S in Fig. 5.1 are defined by semantic rules given

below, which are applied to configurations containing graph programs
[
S,GQ

P

]
(see Definition 7).

We follow a small step style of operational semantics [65]. The semantic rules define computation

steps on configurations.

A configuration is a multi-set {O1, . . . , On} where Oi is a graph program or an intermedi-

ate object (denoted by angular brackets and that uses auxiliary operators). In the semantic

rules, we abuse notation and identify a singleton multi-set with its element and work mod-

ulo the flattening of multi-sets and use the =
flat

symbol to represent a flattening, for instance

{{Oa, . . . , Ob}, Oy, . . . , Oz} =
flat
{Oa, . . . , Ob, Oy, . . . , Oz}.

The computation steps defined by the semantic rules can be seen as creating a derivation tree

where each computation creates a branch in the tree. At any point during the computation, the

CHAPTER 5. STRATEGY LANGUAGE 55

current configuration represents the set of all leaves of that tree. An example of a tree can be seen

in Figure 5.3 and throughout Appendix A and B.

There is no need for a strategy to control the semantic rules since they are applied exhaustively.

Auxiliary Operators and Intermediate Objects

There exists three auxiliary operators:

• ;2

• if2()then()else()

• ()orelse2()

These auxiliary operators are used to express intermediate steps for the ;, if()then()else()

and ()orelse() operators respectively. To show their necessity, let us look at sequential application

with the ; operator. If we have a graph program [S1;S2, G
Q
P] we need to first apply S1 to GQ

P but

also keep S2 in memory to apply later (if the application of S1 is successful). It is not possible to

represent this with the current notion of graph programs so we use an intermediate object (using

angular brackets) and the ;2 auxiliary operator to get 〈[S1, G
Q
P];2 S2, G

Q
P 〉. The left hand side of the

operator being the next graph program we would like to compute and the right hand side serving

as memory.

The same is done with if2()then()else() to create an intermediate object where we can com-

pute the result of the isSuccess() funtion applied to the graph program that is the condition of

the if()then()else().

The ()orelse2() is used much like ;2, where its left hand side holds a graph program we would

like to have evalauted and the right hand side storing a strategy in memory.

There are three types of semantic rules (see below):

• Four that take a graph program and return an intermediate object. []→<>

• Five that take an intermediate object and return a set of graph programs. <>→ {[], . . . , []}

• The rest take a graph program and return a set of graph programs. []→ {[], . . . , []}

Type Variables

We type variables in rules by naming them as the initial symbol of the corresponding grammar

with an index number if needed (for example: A1 is a variable of application type; S3 represents

a strategy expression; F2 represents a focusing expression).

Semantic Rules

• Graph rewrite rules are themselves strategy operators:

[(L⇒ R)NM , G
Q
P] → {[Id, G1

Q1

P1
], . . . , [Id, Gk

Qk

Pk
]}

if GQ
P →

gi
(L⇒R)NM

Gi
Qi

Pi
(∀i, 1 ≤ i ≤ k) with g1. . . gk pairwise different.

[(L⇒ R)NM , G
Q
P] → {[Fail, GQ

P]} if the rule is not applicable

CHAPTER 5. STRATEGY LANGUAGE 56

• Parallelism is allowed through the operator || which works on applications only (not on

general strategies). To define the semantics of (L1 ⇒ R1)N1

M1
|| . . . ||(Lk ⇒ Rk)Nk

Mk
, we define

a new rule ((L1 ∪ · · · ∪Lk)⇒1...k(R1 ∪ · · · ∪Rk))N1∪···∪Nk

M1∪···∪Mk
where ⇒1...k contains all the ports

and edges of ⇒i (for 1 ≤ i ≤ k).

It implements simultaneous application of rules at disjoint redexes.

[(L1 ⇒ R1)
N1
M1
|| . . . ||(Lk ⇒ Rk)

Nk
Mk

, GQ
P] → {[((L1 ∪ · · · ∪ Lk)⇒1...k(R1 ∪ · · · ∪Rk))

N1∪···∪Nk
M1∪···∪Mk

, GQ
P]}

if ∀i, Li ∩ P 6= ∅

[(L1 ⇒ R1)
N1
M1
|| . . . ||(Lk ⇒ Rk)

Nk
Mk

, GQ
P] → {[Fail, GQ

P]} otherwise

• The non-deterministic one() operator is defined with the following two rules:

[one((L⇒ R)NM), GQ
P] → {[Id, G′Q

′

P ′]} if GQ
P →

g

(L⇒R)NM
G′

Q′

P ′

[one((L⇒ R)NM), GQ
P] → {[Fail, GQ

P]} if the rule is not applicable

While one() takes a transformation T as an argument in the syntax, the semantics will

expect any parallel transformation to be reduced to a rule application first.

• Position definition:

[setPos(F), GQ
P] → {[Id, GQ

P ′]} where P ′ is the result of F

[setBan(F), GQ
P] → {[Id, GQ′

P]} where Q′ is the result of F

[isEmpty(F), GQ
P] → {[Id, GQ

P]} if F is an empty graph

[isEmpty(F), GQ
P] → {[Fail, GQ

P]} if F is not an empty graph

• Sequential application: (where E is Id or Fail)

[S1;S2, G
Q
P] → 〈[S1, G

Q
P];2 S2, G

Q
P 〉

〈{[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]};2 S2, G

Q
P 〉 → {[E1;S2, G1

Q1

P1
], . . . , [Ek;S2, Gk

Qk

Pk
]}

[Id;S,GQ
P] → {[S,GQ

P]}

[Fail;S,GQ
P] → {[Fail,GQ

P]}

Here, we promote S1 with the first rule so that it can be applied to GQ
P . The next rule takes

all the graph programs in the result set that is returned and puts each of them in sequence

with ;2 S2. The following two rules then deals with the outcomes of the concatenation done

in the previous rule.

• Conditional :

[if(S1)then(S2)else(S3), GQ
P] → 〈if2(isSuccess([S1, G

Q
P]))then(S2)else(S3), GQ

P 〉

〈if2(True)then(S2)else(S3), GQ
P 〉 → {[S2 , GQ

P]}

〈if2(False)then(S2)else(S3), GQ
P 〉 → {[S3 , GQ

P]}

The first rule promotes S1 which is the strategy we are trying to check so that it can be applied

to GQ
P and is put into the isSuccess() function. Depending on the result of isSuccess(), S2

(if isSuccess() returns True) or S3 (if isSuccess() returns False) is applied to GQ
P .

CHAPTER 5. STRATEGY LANGUAGE 57

• Iteration:

[while(S1)do(S2), GQ
P]→ 〈if2(isSuccess([S1, G

Q
P]))then(S2; while(S1)do(S2))else(Id), GQ

P 〉

Iteration uses a recursive rule transforming a while into a while nested in an

if2()then()else().

• Priority choice: (where E is Id or Fail)

[(S1)orelse(S2), GQ
P] → 〈([S1, G

Q
P])orelse2(S2), GQ

P 〉

〈({[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]})orelse2(S2), GQ

P 〉 → {[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]}

if isSuccess({[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]}) = True

〈({[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]})orelse2(S2), GQ

P 〉 → [S2, G
Q
P]

if isSuccess({[E1, G1
Q1

P1
], . . . , [Ek, Gk

Qk

Pk
]}) = False

Here, S1 is promoted so that it can be applied to GQ
P . The next two rules return the result

set (if isSuccess() on the result set is successful) or S2 otherwise.

() orelse () is a primitive operator here since rewriting (S1)orelse(S2) to

if(S1)then(S1)else(S2) creates two instances of S1 that could be successfully executed in

the if() part of the if()then()else() but then create a failure when it is executed as the

then() part. This is due to the non-determinism of the OneSuc(a)nd one() operators.

5.3.3 An Example

Let us consider the graph program [if(R1)then(R2;R3)else(R4), GQ
P] where R1,R2,R3 and R4

are rules and G a port graph.

We will leave the position subgraph and banned subgraph out of the notation for the sake of

clarity. An application of a semantic rule is denoted by a long single line while a short double

line is a multi-set flattening application. Since semantic rules are applied exhaustively and in any

order, different derivations are possible. In a terminating graph program that doesn’t use the non-

deterministic operators OneSuc() and one(), we will end up with the same result set no matter

what order the semantic rules are applied in (See Section 5.4).

For clarity, we will apply the semantic rules in the following example from left to right.

Using the semantics defined above we get the following derivation:

1 [if(R1)then(R2;R3)else(R4), G]∣∣∣∣∣ First rule in Conditional

2 〈if2(isSuccess(R1))then(R2;R3)else(R4), G〉

isSuccess(R1) returns True

∣∣∣∣∣
3 〈if2(True)then(R2;R3)else(R4), G〉∣∣∣∣∣ Second rule in Conditional

{[R2;R3, G]}

CHAPTER 5. STRATEGY LANGUAGE 58

‖

4 [R2;R3, G]∣∣∣∣∣ First rule of Sequential Application

5 〈[R2, G];2R3, G〉

R2 can be applied at 3 different places on G

∣∣∣∣∣ A Rule Application

6 〈{[Id, G1], [Id, G2], [Id, G3]};2R3, G〉∣∣∣∣∣ Second rule of Sequential Application

7 {[Id;R3, G1], [Id;R3, G2], [Id;R3, G3]}∣∣∣∣∣ Third rule of Sequential Application

8 {[R3, G1], [Id;R3, G2], [Id;R3, G3]}∣∣∣∣∣ Third rule of Sequential Application

9 {[R3, G1], [R3, G2], [Id;R3, G3]}∣∣∣∣∣ Third rule of Sequential Application

10 {[R3, G1], [R3, G2], [R3, G3]}

R3 can be applied at 2 different places on G1

∣∣∣∣∣ A Rule Application

{{[Id, G11], [Id, G12]}, [R3, G2], [R3, G3]}

‖

11 {[Id, G11], [Id, G12], [R3, G2], [R3, G3]}

R3 cannot be applied on G2

∣∣∣∣∣ A Rule Application

{[Id, G11], [Id, G12], {[Fail, G2]}, [R3, G3]}

‖

12 {[Id, G11], [Id, G12], [Fail, G2], [R3, G3]}

R3 can be applied in only 1 position on G3

∣∣∣∣∣ A Rule Application

{[Id, G11], [Id, G12], [Fail, G2], {[Id, G31]}}

‖

13 {[Id, G11], [Id, G12], [Fail, G2], [Id, G31]}

Step 13 is the final step since all graph programs in its set are irreducible. This is our result

set. Below, we show the same graph program but in tree form (see Figure 5.3), where if a rule is

applicable in more than one place in G the tree branches for each possibility. Each node in the tree

represents a derivation step and the numbers below each node show the correspondence between

the tree and the above semantic derivation. To see the partially constructed tree for a particular

derivation (for example step 8), simply remove all nodes that have all their numbers strictly higher

than 8 so that all nodes containing 8 are leaf nodes (see Figure 5.4).

CHAPTER 5. STRATEGY LANGUAGE 59

[if(R1)then(R2;R3)else(R4), G]

(1)

〈if2(isSuccess(R1))then(R2;R3)else(R4), G〉

(2)

〈if2(True)then(R2;R3)else(R4), G〉

(3)

[R2;R3, G]

(4)

〈[R2, G];2R3, G〉

(5)

〈{[Id,G1]};2R3, G〉

(6)

[Id;R3, G1]

(7)

[R3, G1]

(8,9,10)

[Id, G11]

(11,12,13)

[Id, G12]

(11,12,13)

〈{[Id,G2]};2R3, G〉

(6)

[Id;R3, G2]

(7,8)

[R3, G2]

(9,10,11)

[Fail, G2]

(12,13)

〈{[Id,G3]};2R3, G〉

(6)

[Id;R3, G3]

(7,8,9)

[R3, G3]

(10,11,12)

[Id, G31]

(13)

Figure 5.3: The fully developed derivation tree.

CHAPTER 5. STRATEGY LANGUAGE 60

[if(R1)then(R2;R3)else(R4), G]

(1)

〈if2(isSuccess(R1))then(R2;R3)else(R4), G〉

(2)

〈if2(True)then(R2;R3)else(R4), G〉

(3)

[R2;R3, G]

(4)

〈[R2, G];2R3, G〉

(5)

〈{[Id,G1]};2R3, G〉

(6)

[Id;R3, G1]

(7)

[R3, G1]

(8,9,10)

〈{[Id,G2]};2R3, G〉

(6)

[Id;R3, G2]

(7,8)

〈{[Id,G3]};2R3, G〉

(6)

[Id;R3, G3]

(7,8,9)

Figure 5.4: The derivation tree developed to step 8.

The tree notation here is interesting since the PORGY tool described in Chapter 7 uses that

notation to display derivations. More details of this are given in that chapter.

5.4 Properties

5.4.1 Termination

Graph programs are not terminating in general, however we can characterise a terminating sub-

language and characterise the normal forms of terminating graph programs.

Property 1 (Termination). The sublanguage that excludes the while construct does not generate

infinite derivations with the semantic rules.

Proof. To prove that a graph program in this sublanguage does not generate an infinite deriva-

tion, we use an interpretation of the configurations used in the semantic rules and show that

this interpretation strictly decreases with each application of a rewrite rule within the semantics.

The interpretation of a configuration is defined as follows: int({O1, . . . , On}) =
n∑

i=1

I(Oi) where

I([S,G]) = size(S) and I(〈S,G〉) = size(S). The size function is defined as:

CHAPTER 5. STRATEGY LANGUAGE 61

size(Id) = 0 size(Fail) = 0 size((L⇒ R)NM) = 1

size(one(T)) = 1

size(setPos(F)) = 1 size(setBan(F)) = 1 size(isEmpty(F)) = 1

size(S1;S2) = 2 + size(S1) + size(S2)

size(C;2 S) = 1 + int(C) + size(S)

size(if(S1)then(S2)else(S3)) = 2 + size(S1) + size(S2) + size(S3)

size(if2(B)then(S2)else(S3)) = 1 + size(S2) + size(S3)

size((S1)orelse(S2)) = 2 + size(S1) + size(S2)

size((C)orelse2(S2)) = 1 + int(C) + size(S2)

size(T1||T2) = 1 + size(T1) + size(T2)

If we calculate the interpretation for both sides of our semantic rules, we see that the left hand

side is strictly greater than the right hand side, therefore showing that our interpretation strictly

decreases with each application of a semantic rule.

5.4.2 Normal Forms

Property 2 (Characterisation of Normal Forms). A strongly terminating graph program
[
S,GQ

P

]
eventually rewrites using the semantic rules to a result set of the form {A1, . . . , An}, where each Ai

is a value. A weakly terminating graph program eventually reduces to a configuration containing

only values and reducible graph programs (at least one of each).

Proof. By inspection of the semantic rules, every graph program [S,GQ
P] different from [Id, GQ

P]

or [Fail, GQ
P] can be matched by a left-hand side of a rule. This is true because S has a top

operator which is one of the syntactic constructions and there is a semantic rule which applies to

it. Moreover every expression of the form 〈X,GQ
P 〉 is reducible, because X either contains a graph

program [S,GQ
P] different from [Id, GQ

P] or [Fail, GQ
P] that so can be matched by a left-hand side of

a rule as above, or one of the auxiliary rules can apply.

This implies that the computation arising from a graph program cannot be blocked before

reaching a configuration containing a value, unless the if-part of a conditional is a non-terminating

program, in which case the isSuccess() function (which is non computable) will block the compu-

tation.

The language contains non-deterministic operators in some of its syntactic categories: OneSuc()

for Focusing and one() for Applications.

5.4.3 Result Set

Property 3 (Result Set). Each graph program in the sublanguage that excludes OneSuc() and

one(), has at most one result set.

CHAPTER 5. STRATEGY LANGUAGE 62

Proof. Consequence of the fact that the semantic rules form an orthogonal system: they are left-

linear and the conditions guarantee non-superposition, see [51].

Property 4 (Result Set with one()). A graph program in the sublanguage that excludes OneSuc()

(but contains one()) produces a result set that is a (non-strict) subset of the same graph program

where all occurrences of one() have been removed from its strategy.

Proof. Assuming a transformation T is applicable, the application of T produces a result set

{[Id, G1
Q1

P1
], . . . , [Id, Gk

Qk

Pk
]} while the application of one(T) produces a result set with a single

element: {[Id, Gi
Qi

Pi
]}, where {[Id, Gi

Qi

Pi
]} ⊆ {[Id, G1

Q1

P1
], . . . , [Id, Gk

Qk

Pk
]}. The result set of a graph

program [one(rule1), GQ
P] is therefore a subset of the result set of [rule1, G

Q
P]. The result follows

by induction.

Intuitively, in a strategy, an application of a transformation with one() creates a configuration

that is a subset of the configuration computed by the same transformation. Successive applications

of transformations with one() generate configurations that are successive subsets of the same

configurations where the transformations were not applied with one().

5.4.4 Completeness

Property 5 (Completeness). The set of graph programs
[
S,GQ

P

]
is Turing complete.

Proof. Consequence of Theorem 1 in [47], which shows that sequence, iteration and the ability to

apply a rule from a set is sufficient to simulate a Turing machine. Iteration (while) and sequence

(;) are primitives in our language. The application of a rule from a set can be defined using the

orelse operator.

It is also interesting to consider which sublanguages of our language are Turing complete.

Property 6 (Complete sublanguage). The sublanguage consisting of graph programs where SR is

built from Id, Fail, rules (L⇒ R)NM in R, sequential composition (;), iteration (while), and orelse

is Turing complete.

Proof. Since Turing machine computations can be simulated using ;, while and orelse, the result

follows.

The same result could be obtained by replacing orelse with the conditional construct if then

else. Perhaps more surprising is the fact that we can simulate Turing machine computations using

the sublanguage consisting of focusing operators and sequential composition (;), iteration (while)

and rule application (L⇒ R)NM together with Id, Fail, setPos() and setBan(). This result follows

from [33], where it is proved that the computations of any Turing machine can be simulated by a

term rewriting system consisting of just one rule, using a strategy that forces the reduction steps

to take place at specific positions (called S-deep-only derivations in [33]). We omit the details

of the proof, but highlight the fact that, given a sequence of transitions in the Turing machine,

CHAPTER 5. STRATEGY LANGUAGE 63

Dauchet [33] shows how to build a rewrite rule to simulate the transitions, using a strategy to

select the position for rewriting according to the instruction used by the machine. The setPos()

construct can be used to simulate Dauchet’s strategy directly, by moving the focus of rewriting to

the corresponding subterm after each rewrite step.

Chapter 6

Application of the Strategy Language

6.1 Non-Primitive Operators

In this section we give examples to illustrate the expressivity of the language. The not and try

operators, well-known in strategy languages for term rewriting, are not primitive operators in our

language but can also be derived as well as the repeat(S) construct that applies the strategy S as

long as possible. We can also define bounded iteration and a for-loop; 9 is a weaker version of ‖.

• not(S) , if(S)then(Fail)else(Id) fails if S succeeds and succeeds if S fails; the graph is

unchanged.

• try(S) , (S)orelse(Id) is a strategy that behaves like S if S succeeds, but if S fails then it

behaves like Id.

• repeat(S) , while(S)do(S) applies S as long as possible.

• while(S1)do(S2)max(n) , if(S1)then(S2; if(S1)then(S2; . . .)else(Id))else(Id) represent-

ing a series of if()s of the same form, such that there are exactly n occurrences of S2.

• for(n)do(S) , S; . . . ;S where S is repeated n times.

• A 9 A′ is similar to A||A′ except that it returns Id if at least one application of A or A′ is

possible.

A1 |||A2 , if(A1)then(if(A1 ||A2)then(A1 ||A2)else(A1))else(A2)

This operator can be generalised to n applications in parallel.

6.2 Traversals

Using focusing (specifically the Property construct) we can create concise strategies that perform

traversals. In this way, we can define outermost or innermost term rewriting (on trees) without

needing to change the rewrite rules. This is standard in term-based languages such as Elan[24]

or Stratego[75][26]; here we can also define traversals in graphs.

64

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 65

6.2.1 Outermost Traversal

Outermost rewriting on trees: we begin by defining the abbreviations start ,

Property(root, CrtGraph), which selects the subgraph containing just the root of the tree. If

we define the next ports (see definition of the NextSuc(F) operator in Section 5.2.1) for each node

in the tree to be the ones that connect with their children, then the strategy for outermost rewrit-

ing with a rule R is:

setPos(start);

while(not(isEmpty(CrtPos)))do

(if(R)then(R; setPos(start))else(setPos(NextSuc(CrtPos))))

In this strategy, if R can be applied then apply it and set the position back to the root of

the tree. If R cannot be applied setPos(NextSuc(CrtPos)) will make all the children of all the

elements in the current position the new current position, thus descending one step into the tree.

6.2.2 Innermost Traversal

Innermost rewriting on trees: using banned subgraphs, this can be written by using start ,

Property(position = leaf, CrtGraph) that selects the leaves of the tree (by looking at a node

attribute labelled position and checking if the value leaf is assigned to it), and rest , CrtGraph \

start by defining, for each node, the next port to be the one that connects with the parent node:

setPos(start); setBan(rest);

while(not(isEmpty(CrtPos)))do(

if(R)

then(R; setPos(start); setBan(rest))

else(setPos(NextSuc(CrtPos)); setBan(CrtBan \ CrtPos))

)

Here, if R can be applied then apply it and set the position back to the leaves of the tree and

put all the other elements of the tree in to the banned subgraph. If R cannot be applied, the

position travels up the tree by one level with setPos(NextSuc(CrtPos)) and the banned subgraph

is updated again to all the remaining elements of the tree (with setBan(CrtBan \ CrtPos)).

6.2.3 Interface Normal Form Traversal

Interface Normal Form: this is a generalisation of the outermost strategy for graphs (not necessarily

trees), used to evaluate interaction nets (see Section 2.1.2 for more details). The interface of a

port graph G is the set of nodes of G that have a free port. They can be selected by defining the

position Int , Property(position = interface, G) where position is an attribute for all nodes that

is assigned a value of interface if the node belongs to the interface. The idea is to rewrite as near

as possible to the interface (i.e., outermost). For each port node, we define its next port to be the

principal port of the node and compute Interface Normal Form with respect to the rule R using a

strategy similar to the outermost one, replacing start with Int.

setPos(Int);

while(not(isEmpty(CrtPos)))do(

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 66

if(R)then(R; setPos(Int))else(

if(isEmpty((CrtPos ∪ NextSuc(CrtPos)) \ CrtPos))

then(setPos(∅))

else(setPos(CrtPos ∪ NextSuc(CrtPos)))

)

)

For this strategy, if R can be applied then apply it and reset the position to the interface. If R is

not applicable, we need to find all the next elements of the interface and add them to the position

subgraph but we also need to take into account cycles. If there is a cycle in the graph then eventually

CrtPos∪ NextSuc(CrtPos) will return a CrtPos that won’t have changed and this would push the

strategy into an infinite loop. To prevent this we check if (CrtPos∪ NextSuc(CrtPos)) \ CrtPos is

empty or not. If it is empty then we have found a cycle so we set CrtPos to ∅ so that the strategy

exits and terminates. If it isn’t empty then we set the current position to CrtPos∪NextSuc(CrtPos)

and loop to try apply R in this updated position subgraph.

6.3 Arithmetic with Interaction Nets

In a term rewriting system with a finite signature natural numbers are often represented using two

function symbols S and 0. Then the number n is represented by a term S(S(. . . S(0) . . .) with n

occurrences of S (as described previously in Section 2.1.2). This representation is inefficient, but

in [55] it is shown that using interaction nets we can implement efficiently arithmetic operations on

integers, with a finite signature, by representing a number z in the form of a difference list p−q. The

I agent is the head of a number and holds two lists of S agents: a left list containing p and a right

list containing q. See Figure 6.1 for an example of the number 1 represented as 4−3. We also note

that there are infinite representations for each number in this way: 1 = 4− 3 = 6− 5 = 7− 6 = ...

The open rule extracts both lists from a number so that they can be used for arithmetic

operations. If two lists are put head to head, the reduce rule will eventually return a single list

containing the absolute value of the difference of the lists. The negate rule, switches the left and

right list of a number, giving us its negative.

Using these three rules we can model Addition, Negation and Subtraction, as seen in Figure

6.2

If we liken the size of a graph to memory space, we could then like to prioritise the reduce rule

so that the graph is always kept at its smallest:

repeat(repeat(reduce);try((negate) orelse (open)))

The strategy will apply reduce as many times as possible and then attempt to apply either

negate or open before looping back to apply reduce again as many times as possible.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 67

Figure 6.1: An example number and the open, reduce and negate rules.

Figure 6.2: Modelling Addition, Negation and Subtraction.

6.4 Von Koch Fractals using Port Graphs

To draw a Von Koch Fractal (see Figure 6.3), we only need one node type and one rule. Our initial

graph is a triangle and has one (and only one) of the nodes in P. We define a rule vonKoch of type

(L⇒ R)NM (see VFK in Figure 6.3) such thatM contains the right-most node from the right-hand

side of the rule.

This means that after each application of vonKoch, the following segment will be the only

application possible due to P. Our rule will then travel round the triangle segment by segment

gradually creating a more complex fractal after each round trip.

In Figure 6.4, we can see three successive applications of vonKoch. Nodes drawn with dashed

lines are nodes that are in P. The VKF strategy used is:

repeat(vonKoch)

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 68

To do just n iterations, we can use the following strategy:

for(n)do(vonKoch)

Without the notion of position in the strategy language, the application of the V KF rule would

have been random and the fractal being generated will not necessarily be balanced. The strategy

language with its use of focusing constructs, allows the rewriting to go round the triangle creating

the fractal in a concise way.

Figure 6.3: Modelling the Von Koch Fractal.

Figure 6.4: The Von Koch Fractal.

6.5 Sierpinski’s Triangle Generation Using Port Graphs

Sierpinski’s Triangle is a fractal that can be recursively defined [62]. An example of its evolution

can be seen in Figure 6.5.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 69

Figure 6.5: The evolution of a Sierpinski Triangle.

For this example, we only need one type of node so an empty-labelled node will be used to keep

the generated graphs simple. This node will have four ports with identical names since the port

being used here doesn’t affect the system we are modelling, we again will not explicitly draw the

ports to simplify the drawing.

The base case for Sierpinski’s Triangle (going from one triangle to three) can be used as the

only rule needed to generate iterations of the fractal and can be seen in Figure 6.6. In this rule,

we have drawn the elements to put into the subgraph N of the rule with dotted lines for clarity

(these nodes will be added to the banned subgraph Q during the rewriting step). All other nodes

in the right hand side are put into M subgraph (to be added to the position subgraph P during

the rewrite step).

Figure 6.6: The only Sierpinski Triangle rule.

The starting graph will contain a simple triangle (like the one in the left hand side of the rule)

with all its elements in the graph’s position subgraph P . We then try to apply the rule as many

times as possible. When the rule is no longer applicable we have created one full iteration of the

fractal. To proceed to the next iteration we just need to take all the nodes that aren’t banned

(G\Q) and add them into P and then empty Q. We then apply the rule as many times as possible

and that will result in the next iteration.

A strategy for creating n iterations of Sierpinski’s Triangle would be:

for(n)do(setPos(CrtGraph \ CrtBan); setBan(∅); repeat(rule))

where rule is the rule defined in Figure 6.6.

Here, the tactical use of banning and position ensures that only the correct triangles are

recursed on, and they are only each used once per iteration.

The following three figures (6.7, 6.8 and 6.9) each show an iteration of the execution of the

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 70

above strategy (With the final one only showing the setPos(CrtGraph \ CrtBan)). In the figures,

nodes labelled P are in the P subgraph and black nodes denotes nodes in the Q subgraph.

Figure 6.7: The first derivation.

Figure 6.8: The second derivation.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 71

Figure 6.9: The start of the third derivation.

The repeat(rule) terminates since rule puts elements into the banned subgraph in a way that

gradually isolated the remaining elements in P , eventually making rule inapplicable.

6.6 Game and AI Example Using Pacman

To simulate a game of pac-man, we use the initial graph in Figure 6.10 with the five types of

nodes depicted. We assume all nodes in this system apart from the space node to have one port

each, used to connect to a space node. The space node has 6 ports, one for each direction (up,

down, left and right), one for pac-man and ghosts to connect to (the character port, depicted by

an arrowhead) and one for pac-dots (the dot port, depicted by a filled black circle). For visual

simplicity, we do not draw any free ports or ports whose state does not affect a rewrite rule. So

conversely, if a port is explicitly drawn in a rule, it must be free.

The rewrite rules for pac-man can be found in Figure 6.11. Each rule in this figure is a macro

rule: for the explore rule, we don’t say which directional ports are used to connect the two space

nodes and in fact would have to create four version of the rule, one for each direction possible

between two space nodes. For simplicity’s sake Figure 6.11 uses these macro rules but for an

implementation all the explicit rules need to be created (unless the implementation has a macro

feature coded, something in PORGY’s future work).

These rules, with the help of a strategy, simulate a basic “artificial intelligence” for pac-man.

Pac-man’s first instinct is to flee any nearby ghosts (rules flee1 and flee2). If pac-man is not near

any ghosts, he then seeks out pac-dots (rule getPacDot) and then if not near any pac-dots, he

proceeds to explore the level (rule explore).

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 72

Figure 6.10: The pac-man playing field.

Figure 6.11: The set of rules to control pac-man (left) and to control the ghosts (right).

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 73

The strategy for controlling pac-man is as follows:

pacAI:

(flee1) orelse ((flee2) orelse ((getPacDot) orelse (try(explore))))

The rewrite rules for the ghosts can be found in Figure 6.11. Like for pac-mac, these rules

and a set of strategies help simulate the AI to control the ghosts. A ghost’s first priority is to

eat pac-man (rule kill). If pac-man is not nearby, then a ghost tries to move to a space with no

pac-dots (rule move1) since following empty spaces should lead the ghost to pac-man. If a ghost

can only move to a space with a pac-dot, then do so (rule move2). The strategy for controlling

ghosts is as follows:

ghostAI:

(kill) orelse (gMove)

gMove:

(move1) orelse (move2)

The overall strategy called gameLoop that controls the game is as follows: we must first check

that pac-man has not been eaten (by checking for the existence of a node of type End). We then

call pacAI followed by ghostAI for each ghost.

To make sure we only move each ghost only once per turn, we can do two of the following

things:

• We can add all ghosts to P at the start of each game loop and make sure all the rules that

involve ghosts have an empty M (i.e., no nodes from their right-hand sides will become part

of the subgraph where the next rewrites will apply). This means every time a ghost performs

an action, which removes the ghost from P , it cannot perform another one till the next game

loop where we add all the ghosts back into P .

gameLoop1:

repeat(

setPos(Property(Pc, CrtGraph) ∪ Property(Gh, CrtGraph) ∪

Property(End, CrtGraph));

if(isEmpty(Property(End,CrtGraph)))then(pacAI ; repeat(ghostAI))else(Fail)

)

• Alternatively, we can not use the M subgraph of rules, and instead use the N subgraph by

adding all ghosts on the right hand side of the rules into N . This means that once a ghost is

moved, it is added to the banned subgraph and will not be able to be used for the rest of the

turn. At the start of each turn, we then empty the banned subgraph to start the loop again.

gameLoop2:

repeat(

setBan(∅);

if(isEmpty(Property(End,CrtGraph)))then(pacAI ; repeat(ghostAI))else(Fail)

)

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 74

In both gameLoop1 and gameLoop2, repeat(ghostAI) is guaranteed to be terminating since

for the case of gameLoop1 the ghosts are removed from P after they are moved and so eventually

no ghosts will remain in P . For gameLoop2, the ghosts are put into the banned subgraph after they

are moved and so eventually no ghost rule will be applicable.

Running a graph program with this strategy would return a result set of all possible plays of

that specific game of pac-man. If we only wanted one game to be returned we would only have to

encompass each of the rules used in the strategy with a one() operator.

As we can see, a pac-man game with basic AI does not require many nodes and just six relatively

simple strategies are sufficient to model it using our language. The position here is used like a

for loop to iterate through all the ghosts once per turn. No extra rules (like rules that serve to

increment counters) were needed to control the movement rules.

Adding a scoring system would be trivial: each time pac-man eats a pellet, a point node would

be created and added to a list of points which can then be counted at the end of a game.

6.7 Pathfinding

We will now give a program to find a path in a labyrinth. The labyrinth is represented as a graph

built out of Labyrinth nodes, as shown in Figure 6.12, where Labyrinth nodes are depicted as empty

circles and exits are represented with an End node. The initial located graph in this example has

a Pather node connected to the start of the maze.

A Labyrinth node has five ports, one for each cardinal direction North, East, South and West

and a Pather port, where a Pather node can attach to (see Figure 6.13). The End node has the

same ports as a Labyrinth node but will react differently when a Pather node is connected to it.

We will also have a V isited node, which has the same ports as a Labyrinth node but like the End

node, will react differently when a Pather node connects to it. Lastly we have a PATH node

which has the same ports as the Labyrinth node and will be used to replace Labyrinth nodes so

that a visible path will be drawn from the start to the exit of the labyrinth.

For the sake of clarity, in the following diagrams the four directional ports will not be labelled

but will be drawn in the standard orientation on the nodes. In the rules, a white port means that

the port must be connected, a crossed port must be free and a black port means either connected

or free.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 75

Figure 6.12: An example of a labyrinth.

Figure 6.13: A Labyrinth node, End node and V isited node.

A Pather node has a Position port and a List port. The Position port connects to a Labyrinth

node and the List port will connect to a list of Direction nodes (representing the path followed

so far). We have four Direction nodes N , E, S and W that each have two ports: a Next and a

Prev port. We will also need a Drawer node (with the same ports as a Pather node) that will

travel back to the start of the labyrinth, following a list of Directions and replacing Labyrinth

nodes with PATH nodes.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 76

Figure 6.14: A Pather node and the four Direction nodes.

Lastly, we have some management nodes: two copy nodes (cp2 and cp3) and a delete node

named ε. The copy nodes take a list of directions and duplicate (cp2) or triplicate (cp3) it. The

ε node takes a list and deletes it. The rewrite rules for cp2 can be found in Figure 6.15 (the cp3

rules are similar but produce three copies) and the rewrite rules for ε in Figure 6.16.

Figure 6.15: The set of rules for cp2.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 77

Figure 6.16: The set of rules for ε.

The program consists of the strategy expression LabStrat described below, and a located graph

representing the labyrinth, where the only node in the initial subgraph P is the Pather node

marking the starting point in the labyrinth. The strategy has two main parts, which we call Step

1 and Step 2. Step 1 attempts to find a path to the exit of the labyrinth, by moving the starting

Pather until a Pather node positions itself onto the End node. If a Pather node is positioned

onto an End node, a path was found and the program will move onto the Step 2. When a Pather

node moves to a new position, it changes the Labyrinth node it moved from into a V isited node.

This will ensure the Pather node never backtracks.

The strategy will start by checking if a Pather node is connected to four Labyrinth or End

nodes that have their Pather port free (rule split4 in Figure 6.17, a special case of when the

starting Pather is put on such a Labyrinth node). This rule will remove the Pather node and

create four new Pather nodes for each of the four positions and give each one of the new Pathers

a corresponding Direction node (to remember the step done).

Figure 6.17: The split4 rule. α is a Labyrinth or End node.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 78

If split4 cannot be applied, the strategy will try to apply one of the four split3 rules split3a,

split3b, split3c or split3d. This rule deletes the original Pather node and creates three new Pather

nodes, adding a correspondingDirection node to each of their lists, and copying the original Pather

node’s list onto the end of the new Pather nodes’ lists. See Figure 6.18 for the split3a rule (the

other three split3 rules are similar, taking into account the remaining combinations).

Figure 6.18: The split3a rule. α is a Labyrinth or End node.

If none of the split3 rules can be applied, the strategy then tries all six of the split2 rules and if

none of the split2 rules can be applied, it tries one of the four split1 rules. These rules do the same

thing as the split3 rules but only split to two and one Labyrinth nodes respectively. See Figure

6.19 for split1a and split2a.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 79

Figure 6.19: The split2a and split1a rule. α is a Labyrinth or End node.

We need to apply the split rules in this specific order or a possible split might be missed. For

example, split1a might be applicable somewhere where split3a is also applicable but by applying

split1a first we would not then explore the labyrinth to the West or South. This could lead to

ending up with a longer path to the exit or in the worst case not finding the exit at all.

All split rules have an empty M subgraph. This will allow the strategy to move each Pather

at most once per iteration. The strategy will do this and then use Property(ρ,G) to add all the

Pathers back to P and then start over again. This ensures that no Pather is given priority and

is needed to find the shortest path (as explained further down).

While trying to apply the split rules in that specific order, the strategy will constantly check if

the found rule (in Figure 6.20) is applicable. If it is, it moves onto Step 2: drawing the path. If

the End node is not reachable from the starting point, the program will not terminate.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 80

Figure 6.20: The found, done and drawN rules.

Step 2 checks if the done rule (Figure 6.20) is applicable and if it is not it will attempt to

apply the four draw rules drawN , drawE, drawS and drawW . See Figure 6.20 for the drawN

rule; the other three draw rules are similar and cater to a different direction each.

If the done rule is applicable, the program will terminate and our labyrinth will have the shortest

path to the exit drawn on it.

LabStrat: Step1 ; Step2

Step1: while(not(found))do(

setPos(Property(Pather,CrtGraph));

repeat(Step1Split);

) ;

found

Step1Split: (split4) orelse ((split3a) orelse ((split3b) orelse ((split3c) orelse ((split3d) orelse

((split2a) orelse ((split2b) orelse ((split2c) orelse ((split2d) orelse ((split2e) orelse

((split2f) orelse ((split1a) orelse ((split1b) orelse ((split1c) orelse (split1d))))))))))))))

Step2: while(not(done))do(

(drawN) orelse ((drawE) orelse ((drawS) orelse (drawW)))

) ;

done

Since Labyrinth nodes are changed to V isited nodes when a Pather moves from them, if a

branching occurs in the labyrinth that later reconnects (as seen at the lower middle Figure 6.12)

the branch with the shortest path will be picked (remembering that each Pather can only take one

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 81

step at most during each iteration so the Pather in the shortest branch will get to the reconnecting

Labyrinth node first).

Branching that reconnects will cause stuck Pathers. When the Pather from the quickest

branch gets to the reconnecting Labyrinth node, it will split and go to the slowest branch. That

newly split Pather will eventually meet the original Pather of that branch (going the other way).

These two Pather nodes will be positioned in two adjacent Labyrinth nodes but won’t be able to

move and remain stuck there. We could extend our graph program by creating a set of rules to

eliminate these stuck Pather nodes, using the ε node. This is mainly an aesthetic improvement

since the stuck Pather nodes will not affect the functionality of the program.

This example uses the same concept as the pacman example (Section 6.6) where the Pather

rules take the Pather nodes out of P so make sure that the repeat(Step1Split) always terminates.

We can also use the same alternate concept as the packman example and use the banned position

and make all the Pather rules put the Pather nodes into Q.

6.8 Flag Sorting

The following example shows how a non-ordered list of three colours (Blue, Red and White) can

be sorted to represent the French flag (Blue first, then White and finally Red). We have three

nodes representing each colour (shown in Figure 6.21) that have two ports each: a previous port

(to the left of the node) and a next port (to the right of the node). We also have a Mast node at

the beginning of the list.

Figure 6.21: The four port node types and the 3 flag sorting rules.

Using the three rules in Figure 6.21, we can swap two colours if they are in the wrong order.

Using the ||| operator we can also attempt to apply as many of these rules as we can in parallel.

Our overall strategy would then be:

repeat(setPos(CrtGraph); ((white1 |||red1)|||red2))

We can also program a sorting algorithm that starts from the mast. The initial P contains only the

Mast node. If no rule can be applied, we move P one position across the list and try again. After a

rule is applied we reset P to be justMast. When we reach the end of the list, the program terminates

and the list is correctly ordered. By defining: swap , ((white1)orelse(red1))orelse(red2) and

backToMast , Property(mast, CrtGraph), the strategy is:

setPos(backToMast);

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 82

while(not(isEmpty(CrtPos)))do

(if(swap)then(swap; setPos(backToMast))else(setPos(NextSuc(CrtPos))))

This example illustrates the modularity of programs in the language: to program a flag-sorting

algorithm that proceeds from the mast onwards we do not need to change the rewrite rules (in

contrast with other graph rewriting languages where focusing constructs are not available and

conditional rewriting is used).

Appendix A shows figures of the Flag Sorting example running in PORGY.

6.9 Biochemical Reactions in the AKAP Model

An example can be found in [8] where a biochemical network of the scaffold-mediated crosstalk

between the cyclic adenosine monophosphate (cAMP) and the Raf/MEK/ERK pathway [7] is mod-

elled. This interaction has an important role in the regulation of cell proliferation, transformation

and survival.

The six chemical species occurring in this model (AKAP, PKA, PDE8, Raf-1, cAMP and SA)

are each represented by a node with ports representing sites on the species.

Four possible chemical reactions are written as rules in Figure 6.22:

• Rule r1 matches an AKAP connected to a PKA, a PDE8 and a Raf-1 (each with their right

port free) and a cAMP that has its only port free as well. Two attribute conditions are also

present in the left-hand-side: both right ports of PDE8 and Raf-1 must have an attribute

state set to the value "−". The rule rewrites this left-hand-side to a same port graph where

the cAMP port has been connected to the right port of the PKA.

• Rule r2 separates a cAMP from a PKA and changes the state attribute of the two right ports

of PDE8 and Raf-1 to "+".

• Rule r3 matches a similar left-hand-side as r1 but in this case the state attribute of the right

ports of PDE8 and Raf-1 must be "+". This rule then destroys the cAMP and creates a SA.

• Rule r4 looks for an unconnected cAMP and a PDE8 with a free right hand port (the

connection status of its left port is unimportant) that has its state attribute set to "−". This

rule destroys the cAMP molecule.

These four rules depend heavily on attributes, without them rules r1 and r3 would have the

same left-hand-side. Creating these rules without attributes would require to have two nodes for

PDE8 (PDE8+ and PDE8-) and two for Raf-1 (Raf-1+ and Raf-1-). Also if any new rule would

not care about the state of PDE8’s right port then two rules would need to be created to match

either PDE8+ or PDE8-. These extra nodes and rules would expand to quite a large size if the

nodes had more ports and more attributes since we’d have to cater to every possible combination

of attributes. This shows the usefulness of attributes within nodes, ports and rules.

A simple strategy here would be to try to apply all the rules in parallel as many times as

possible:

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 83

repeat(((r1 9 r2) 9 r3) 9 r4)

Figure 6.23 shows the starting model used for the application which contains a large number

of cAMP nucleotides and some AKAP,PKA, PDE8 and Raf-1 species connected together. This

screenshot is taken from the PORGY tool, described in the following chapter.

Figure 6.22: The rules relating to the AKAP Model.

CHAPTER 6. APPLICATION OF THE STRATEGY LANGUAGE 84

Figure 6.23: The starting graph for the AKAP model.

Chapter 7

PORGY

The PORGY Team

With previous research and interest in graph rewriting systems, the members of the PORGY team

were interested in creating a tool to develop theoretical models of systems and create and execute

them visually. Some of these models would require very large graphs and complex rules so a

powerful tool was needed. LaBRI’s TULIP1 offered a strong backend for large models and a very

powerful visual editor for graphs. The TULIP team, not having any features pertaining to graph

rewriting, was interested in expanding its features to allow users to model and execute complex

graph rewriting systems.

We will begin with an explanation of the capabilities of the TULIP tool and then continue with

an explanation of what the PORGY tool is and its relation to TULIP. We then present a feature

set for PORGY and explanations of those features.

The author’s main contributions for PORGY from an implementation point of view, is the

Strategy Engine and making design decisions on the GUI and interface of PORGY.

7.1 The TULIP Tool

Tulip is an information visualisation framework dedicated to the analysis and vi-

sualisation of relational data. Tulip aims to provide the developer with a complete

library, supporting the design of interactive information visualisation applications for

relational data that can be tailored to the problems he or she is addressing.[2]

Tulip, created by David Auber2[13], is a multi-platform tool entirely coded in C++. It uses a

powerful backend to store and manage potentially very large graphs and OpenGL3[70] to display

these graphs with speed and visual flair.

TULIP is plugin based, and many built-in plugins allow users to analyse data from graphs and

to run display algorithms on graphs to change the way they are drawn and structured. This highly

modular plugin based system would make it very easy to create and implement the necessary graph
1http://tulip.labri.fr/TulipDrupal/
2http://www.labri.fr/perso/auber/
3http://www.opengl.org/

85

CHAPTER 7. PORGY 86

rewriting algorithms needed into TULIP to create the PORGY tool. The interface is also highly

modular and can easily be modified to prioritise certain interactions such as applying rules and

creating strategies.

TULIP also allows users to create and assign properties to nodes and edges and to create

subgraphs within graphs. There is however no notion of ports in the TULIP graph system and so

a layer had to be implemented between the frontend and the backend to model port graphs. Other

notions such as derivation trees are also not present and had to be implemented.

7.2 The PORGY Tool

One of the goals of PORGY is to allow the user to interact and experiment with a port graph

rewriting system in a visual and interactive way. The user should be able to interact with the port

graph rewriting system at any of these stages:

• Creation of node types.

• Rule creation.

• Creating initial graph.

• Coding different strategies.

• Running strategies and applying individual rules to populate the derivation tree.

• Debug and analyse the resulting derivation tree.

Ideally, interaction should be as visual as possible, for example dragging a rule from a rule

catalogue onto a graph to try apply the rule to that graph.

In the following subsections, graphs (such as the initial graph and all subsequent derived

graphs) are referred to as models since the word graph is used in the backend of TULIP to define

graphs and subgraphs as data structures; we use the word model internally to avoid confusion.

Before explaining the different aspects of the tool, we need to define how we will implement

ports (and therefore port graphs), rules, models and derivation trees (also called trace trees) into

TULIP. Figures for the following sections can be found in Appendix B.

7.2.1 Implementing Ports, Rules and Models

In TULIP, a graph is defined as a set of nodes and a set of edges. Edges are represented by a pair

of nodes (Figure 7.1). There is therefore no built-in notion of ports.

Figure 7.1: TULIP’s representation of graphs.

CHAPTER 7. PORGY 87

To simulate a port node with n ports, we create a main TULIP node for the port node itself,

and then n other TULIP nodes as the n ports that we connect to the main TULIP node with edges

(Figure 7.2).

Figure 7.2: A port node A (with its four ports 1,2,3 and 4) represented in TULIP.

Methods were then coded so that plugins can go from port node form to TULIP form. Users

can then create and edit nodes, rules and graphs as port graphs and the plugins can then convert

back into TULIP form for the backend. A visualisation algorithm is also created that takes a port

node in TULIP form and displays the ports internally to the node (Figure 7.3, in this specific

example the ports are of a darker colour and some are of a different shape). This means that the

user never explicitly sees or interacts with elements that are not in a port graph form.

Figure 7.3: An interaction net example (3× 2) displayed using the port graph drawing algorithm.

TULIP has a powerful construct of subgraphs that can be created from other graphs or sub-

graphs. The entire PORGY hierarchy uses this notion of subgraphs to organise and store the

rules, models and derivation trees. The starting universal graph is called the root and has three

distinct subgraphs for rules, traces and models. Each of these subgraphs themselves are composed

CHAPTER 7. PORGY 88

of subgraphs used essentially as a list of their elements. For example, the rules R1, R2 and R3 will

be subgraphs of the Rules graph (itself a subgraph of the root graph). For more details on this,

please refer to the technical documentation found in [1].

Using this system of subgraphs, our plugins can access lists of the different element types used

in PORGY while still maintaining the highly efficient (in terms of speed and memory space) data

structure built into TULIP.

Rules are represented as a subgraph that contains an arrow node. All nodes added to a rule

have a property Rule_side that must be set to either left or right. The arrow node will have a

port for each interface link between a left hand side node and a right hand side node. This is then

used in the rewriting plugin for the rewiring.

7.2.2 Node, Rule and Graph Creation

graphPaper is not the only way users can create their node types, rules and graphs. PORGY comes

with a built in editor that is less visually intuitive but more useful if you then need to generate

an initial graphs that contains a very large number of identical initial nodes (for instance, the

biochemical in Section 6.9 has a large number of CAMP nodes to create.)

The main creation window (Figure B.1) is divided in three main parts: node creation, model

creation and rule creation.

Nodes: A popup window appears for each created node and its ports (Figures B.2 and B.3). Prop-

erties such as name and colour can be defined for the node and ports can be added to its

list of ports. Like for nodes, users can set name and colour properties for each port and can

also choose a glyph (the shape that will be drawn to screen, for example a circle, square,

hexagon...).

Models: Created nodes can be added to the initial model. A pop up window allows the user to select

a node and how many instances of it to add to the initial graph Figure B.4). It is not possible

at this stage to connect nodes together, this can be done after the creation process manually

by creating edges between ports on in the visualisation of the model. This is very useful

for certain applications such a biomolecular examples where large quantities of unconnected

nodes need to be in the starting model (Section 6.9).

Rules: Rule creation happens in two stages. A first window allows the user to give the rule a name

and has two lists of nodes, one for each side of the rule (Figure B.5) that the user can add

nodes to. Once all the nodes are added, the user can click on the Edges button to create

edges between nodes of each side and then edges between the rule nodes and the arrow node

to create the interface (Figure B.6 and B.7).

These windows were all created for PORGY as TULIP plugins. For the manual editing of

models, users can bring up the view of any models and use the add node and draw edge buttons

to edit a model. add node lets a user select a node type from a list (and even create new types of

nodes) and then click anywhere in the model to add it. draw edge allows the user to the click on a

first port and then a second port to create an edge between them. A delete button is also available

CHAPTER 7. PORGY 89

to remove any nodes and edges (dangling edges resulting from deleting a node are automatically

deleted.

Adding nodes to a rule happens in the same manner except that the user must choose if the

nodes he is about to add should go into the right hand side or left hand side of the rule.To add

edges that define the interface between both sides of a rule, the user simply uses the draw edge

button and PORGY will automatically create a port on the arrow node and draw the proper edges.

7.2.3 The Main PORGY Window

The main PORGY view is displayed as a perspective which is similar to a plugin but used to

create custom interfaces for TULIP. It is divided into a main viewing window and then a modular

collection of windows that display information such as a list of rules, an editor and launcher for

strategies...(Figure B.8).

By default Trace view is displayed, this is where the user will be able to see the derivation

tree that is created and updated after each rule application or strategy execution. A black arrow

from one model to another represents a single rule application or a parallel application of rules

while a green line shows the application of a strategy to make it easier for the user to visualise

the end point of a strategy (especially useful if there were many rule application in the strategy in

question). If a strategy or application is successful the arrow will point to the final model created

from the application of the rule or strategy. On the other hand, a fail application of a rule or

strategy will point to a red square, a visually explicit representation of failure. An example of a

trace can be seen in Figure B.9.

Using TULIP features, the trace is essentially a graph using special nodes called meta-nodes.

These meta-nodes can be linked to our models and are visually a window into the model: zooming

into the meta-node the user will be able to see the model it is representing and the user can even

enter the window to gain access to the model.

Models, rule and a rule catalogue can be loaded up into their own windows so that users can

visualise and interact with them. The rule catalogue is especially useful for rule application, as

explained in the following section.

7.2.4 Model and Rule Visualisation

TULIP come with different display algorithm for different types of graphs and PORGY uses some of

those display algorithms to draw models. Depending on the application, a particular algorithm can

be used to draw the model, for instance the Flag Sorting example in Section 6.8 uses the Sugiyama

(OGDF) algorithm to draw the list of colours in a straight line while the GEM algorithm gives

better visual results for the biomolecular example in Section 6.9. Users can create their own display

algorithms to suit the visual style of what they are modelling.

Rules have a special drawing algorithm that forces nodes to always be drawn on the correct

side of the arrow node and to be spaced in a way to preserve overall shape between left and right

hand side as much as possible.

CHAPTER 7. PORGY 90

7.2.5 Strategy and Rule Application

Rules can be applied through the Algorithm → General → Check and Apply Rule menu item

(Figure B.10) where the user can enter the name of the rule they want to apply or by directly

dragging the rule from the rule list or rule catalog onto a model. This more intuitive method still

opens up the same window seen in Figure B.10 but fills in the window according to which rule was

dragged. This method of interaction gives the user a feeling of direct feedback which helps with

visualising and interpreting the changes that happen in the trace tree after a rule application.

Strategies are created and edited in the Strategies pane (Figure B.11). The user selects a

strategy from a list and can then edit the strategy directly in a text box. They can then manually

select a starting model and click the Execute button to apply the strategy to that model or (like

for rule application) directly drag a strategy from the strategy list onto a model. It is also possible

to generate strategies from the trace tree: the user selects a sequence of models on the tree and

then clicks on the emph icon in the Strategies pane and then chooses Strategy from trace graph.

This will create a strategy that will be a sequence of rules that derive the starting model of the

sequenced to the end model of the sequence.

Strategies can also be imported from a .txt file and exported to one as well. PORGY has added

macros into the strategy language so that a strategy strat1 can be written into another strategy

by typing #strat1# into it.

After a rule or strategy application, the view of the trace tree changes by zooming in/out and

panning to show the the single derivation set (in the case of a rule application) or the whole branch

created by a strategy. This, much like the rule and strategy dragging, helps the user see where

and how an application changed the trace tree and is very helpful in debugging and analysing the

modelled system.

7.2.6 Debugging and Static Analysis

PORGY comes with a set of features to debug and analyse a modelled system. A branch or branch

section can be selected and then visualised in different ways: a small multiples view displays the

sequence as a detailed step by step (including highlighting the left hand side instance, the left hand

side removal and the right hand side insertion) grid showing the evolution of the sequence (Figure

B.12). The user can then also watch and control an animation of the evolution of the sequence

which can help them better see the effects of the derivations (Figure B.13). A branch or branch

section can also be viewed as a localised sub trace (so that the user can visually focus on it) or

a histogram where the evolution of certain properties (such as the evolution of the quantity of

different types of nodes) can be analysed.

Under a special Get Information mode, highlighting models in a trace will display the strategy

needed to get from the initial model to the highlighted one. Highlighting black arrows between

models will tell the user what rule was applied, which left hand side instance was used and which

position subgraph was used to generate the new model. This is especially useful to differentiate

models derived from the same original model, but that used a different rule, left hand side instance

or position subgraph. Highlighting a green arrow will show the user what strategy was applied to

CHAPTER 7. PORGY 91

Algorithm 1 Algorithm for matching the left-hand side RL of a rule R in a model G
RL ← Left-hand side of the rule to apply

n← number of instances to return

for all connected component c of RL do

if c is a single port node then

Find all equivalent instances of this port node in G

if no instance found then

return fail

end if

else if c is composed of an edge linking two port nodes then

Find all equivalent instances of this pattern in G

if no instance found then

return fail

end if

else if c is composed of at least two edges then

Find all equivalent instances of each edge of c in G

Only keep the solutions with only one connected component and edges in the same order

if no instance found then

return fail

end if

end if

Construct all instances of RL in G by using the instances of each connected component of RL

in G

return n (or all) constructed instances

end for

the starting model to produce the end model and what the starting position subgraph was.

User can also select subgraphs within a model thus highlighting them not only in that model

but also highlighting all the elements of that subgraph in all subsequent models that contain them.

This is particularly useful to follow the life-span or a particular node, edge or even subgraph.

Another feature merges all models that are isomorphic: this visually shows cycles between

models and if there are multiple paths between two models, which one is the shortest.

7.2.7 Pattern Matching

The pattern matching plugin was built to deal with the particularities of graph rewriting within

located graphs and is mainly inspired by Ullmann’s original algorithm [74]. The plugin must not

only find all the instances of the left hand side of a rule but also make sure that the instances

overlap with the position subgraph and have nothing in common with the banned subgraph (Both

of these subgraphs are defined in Section 5.1.1).

Algorithm 1 from the technical documentation in [1] matches the left hand side RL of a rule R

in a model G:

CHAPTER 7. PORGY 92

When an instance Li is found, the plugin then checks that Li ∩P 6= ∅ and Li ∩Q = ∅ and then

creates a subgraph for the rule instance on the model subgraph. The subgraph is labelled with

the name of the rule being applied and which P and Q were used. This creates a list of possible

applications and is useful to avoid reusing the pattern matching algorithm if the user decides to

later apply the rule again on a same model (with a same P and Q).

For now, this brute force and unoptimised pattern matching has been implemented because

having a working pattern matching algorithm was essential to all the other aspects of PORGY

(rule application, the strategy engine...). Further optimising will be done such as implementing the

check against the banned subgraph during the algorithm and not after a pattern has been matched

and only starting the search from within the position subgraph. A specific matching algorithm

could be created for Interaction Nets since the matching of the left-hand-side of a rule would

only have to find two nodes connected by their principal port, making the matching considerably

easier. Other pattern matching algorithms and methods could also be looked into to see if their

compatibility with the TULIP back-end could bring further optimisations such as Cordella[28],

Lipets[53] and Olmos[63].

Matching of attributes and values is not currently implemented. Adding that into the algorithm

would mean that finding all equivalent instances of this node would mean not only matching the

label but also matching the set of attribute-value pairs.

Other tools such as PROGRES, Fujaba and AGG (detailed in Chapter 3.2) have different

pattern matching algorithms dependant of their data structure and the specific features of their

rules and rewriting steps. A comparison of those can be found in [43].

7.2.8 Rewriting Plugin

The rewriting plugin takes a subgraph containing a instance of the left hand side of a rule and uses

the rule from its name to perform a rewriting step.

It creates a new model which is an exact copy of the current model and then checks the interface

of the instance of the left hand side and stores it temporarily. The left hand side instance is then

deleted and an instance of the right hand side is added to the new model. The plugin then checks

the saved interface and reconnects it to the interface of the right hand side instance. It finally adds

a node between both models containing the name of the rule and the specific instance of the left

hand side that it used for the rewrite step.

7.2.9 Strategy Engine

The strategy engine is a plugin that takes as an input a string containing a strategy and a port

graph (by selecting a PORGY model within the UI). A list of user defined position and banned

subgraphs then appears and the use can select a position and a banned subgraph. It then creates a

vector containing the strategy (much like an abstract syntax tree). It then checks that the syntax

is valid and any variables (such as rule names and property names) exist. The parser part of the

strategy engine uses the Boost libraries4 which contains classes and libraries that help parsing
4http://www.boost.org/

CHAPTER 7. PORGY 93

languages, giving us white space and new line handling for free.

A run function is then executed on the the top element of the vector which tries to apply a

hardcoded version of the semantic rules from Section 5.3. Every time the strategy engine gets to a

rule application, the Pattern Matching plugin (described in Section 7.2.7) is called and if a match

is found, the rewriting plugin (described in Section 7.2.8) is called on one of the instances of a

match (non-deterministically). If the rule isn’t applicable then a fail model is created.

When the strategy engine terminates, it connects the starting model to the end model by a

green arrow which contains a string of the strategy applied.

Currently, PORGY applies all rules as if they were in a one() construct therefore producing a

single branch each time a rule or strategy is executed. Branching on all possible applications of a

rule is currently in development to ensure soundness and completeness in regards to the semantics

defined in Chapter 5 (for example, the if()then()else() in its current form is not sound. Since

it does not have back-tracking, if the execution of the condition fails then the then-branch is

executed. An exhaustive execution of the condition would solve this.). When implemented, the

leaves of the derivation tree will be all the values of the result set of the graph program (if the

program is strongly terminating). Currently, if users execute a same strategy multiple times on a

starting model, the set of leaves of the resulting trace tree is a visual representation of a subset of

the result set defined in Chapter 5.

Chapter 8

Conclusion & Future Work

In this thesis, we introduced a strategy language for graph rewriting and two tools graphPaper

and PORGY to create graph rewriting systems and to execute strategies onto them.

graphPaper and PORGY are both tools that have been designed with visualisation and ease of

use in mind.

This thesis makes several contributions:

• Located graphs are introduced as port graphs that contain two subgraphs that affect rewrit-

ing: the position subgraph P must have an intersection with the instance of the left hand

side of the rule being applied while the banned subgraph Q must have nothing in common

with that left hand side instance. Combined with the focusing constructs of the strategy

language, it provides expressive power (selective rule application, complex graph traversals)

while still remaining intuitive to use. Dividing the language into four syntactic categories

(see Section 5.2) that are distinct except for well defined bridges (setPos(), setBan(), and

different forms of rule application in strategies) emphasises the specific use of each operator

and makes strategies easier to read and write. The notion of a result set is introduced and

fits in nicely with the practical use of trace trees (intuitively, the result set corresponds to

all the leaves of a trace tree).

• graphPaper provides a clean and focused environment to users to easily create port graph

and rules with a simple (yet powerful) context based interaction method. graphPaper aims

to have user interaction as similar as creating port graphs with a pen and paper, with the

added benefit of dynamic digital information.

• PORGY, with the powerful TULIP backend, allows users to apply rules and strategies to

port graphs of potentially large size and see the results in a trace tree. All of PORGY’s

information is displayed in a graphical way which fits nicely with the visual nature of graphs.

Many debugging and data analysis features exist such as animating a sequence of rewrites

and generating strategies from the branch of a trace tree. All these features combined give

users a powerful and versatile environment with which to model strategic graph rewriting

systems.

94

CHAPTER 8. CONCLUSION & FUTURE WORK 95

Strategy Language

Graphs and graph rewriting has shown itself as a powerful formalism to model various different

kinds of systems ranging from biomolecular systems to an AI driven game of pacman. These

models also need a control method that governs the rewriting: the strategy language described in

this thesis is strongly inspired by the work on GP and PROGRES, and by the strategy languages

developed for term rewriting. It can be applied to terms as a particular case (since terms are just

trees). When applied to trees, the constructs dealing with applications and strategies are similar to

those found in Elan or Stratego, where users can also define strategies to apply rules in sequence,

to iterate rules, etc. The focusing sublanguage on the other hand can be seen as a lower level

version of these languages, because term traversals are not directly available in our language but

can be programmed using focusing constructs. By clearly separating the Focusing, Application and

Strategic constructs of our strategy language (except for well defined bridges such as setPos()),

users construct the rules, traversals and control method in a clear manner and simpler manner

with few overlaps. The notion of results sets, due to the fact that a given model can evolve in

different ways, can be used well in implementations as part of derivation trees.

At the moment, the strategy language is a minimum kernel for strategic graph programming,

but in the future will be extended with high-level programming language features such as types,

modules, libraries, focusing variables... A ppick() operator could be added that would take a set

of strategies and associated probabilities and and pick one of them according to their probability

(this would require a definition of a probabilistic transition relation in the semantics).

Rules could be extended with conditions and the ability to transfer attribute values from the

left to the right hand side of a rewrite (the latter could be done by removing the ∗ element and

creating XV , a set of variable value labels, and an additional phase within the rewrite step would

also be necessary to transfer the values from the left-hand-side to the right-hand-side).

Values could be extended to support expressions that in turn would need to be evaluated. This

would allow attributes to be, for example, equal to "4+1" and could even be extended to allow

code to be executed that would then return a value to the attribute.

graphPaper & PORGY

The graphPaper tool is still under development with rule creation and exporting to PORGY being

actively worked on. PORGY, using the strategy language in this thesis, has a strong and developed

control mechanism as well as a powerful and intuitive visualisation (up to 5,000,000 nodes at once)

and interaction aspect. Various verification, analysis and debugging tools allow users to refine

their models, rules and strategies after an execution all within the same tool, proving to be highly

efficient.

Certain parts of the strategy language such as the Property(,) construct are only partially

implemented and currently backtracking is still in development (meaning that all rules are applied

using one() for the moment). The addition of a more feature rich strategy editor is planed (with

syntax highlighting) and the ability to add break-points in a strategy to help with debugging.

Work is also being done on the interface to allow users to create position and banned subgraphs

CHAPTER 8. CONCLUSION & FUTURE WORK 96

on models and to choose which of these subgraphs to use when applying a single rule or a strategy.

A more general matching algorithm is being looked into to allow macros in rules and higher order

variables.

From the visualisation point of view, we are working on enhancing the algorithms for drawing

rules and models, and we already have begun to work on the mental map preservation. Moreover

we will address other application domains: for instance linguistics analysis [42] shares some of the

features of biological networks and we expect to be able to handle linguistic models in PORGY

without much difficulty. Specific perspectives could also be created for specific model types to

better suit the visualisation and interaction on these models.

This concludes the thesis.

Bibliography

[1] https://gforge.inria.fr/projects/porgy/. PORGY website.

[2] http://tulip.labri.fr/tulipdrupal/. TULIP Website.

[3] http://www.oliviernamet.co.uk/. graphPaper Details.

[4] J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: A large scale graph visualization

system. IEEE Trans. Vis. Comput. Graph., 12(5):669–676, 2006.

[5] P. Andersson. Introduction to hyperedge replacement grammars.

[6] O. Andrei. A Rewriting Calculus for Graphs: Applications to Biology and Autonomous Sys-

tems. PhD thesis, Institut National Polytechnique de Lorraine, 2008.

[7] O. Andrei and M. Calder. A model and analysis of the akap scaffold. Electr. Notes Theor.

Comput. Sci., 268:3–15, 2010.

[8] O. Andrei, M. Fernández, H. Kirchner, G. Melançon, O. Namet, and B. Pinaud. PORGY:

Strategy-driven interactive transformation of graphs. In R. Echahed, editor, TERMGRAPH,

volume 48 of EPTCS, pages 54–68, 2011.

[9] O. Andrei and H. Kirchner. Graph rewriting and strategies for modeling biochemical networks.

In V. Negru, T. Jebelean, D. Petcu, and D. Zaharie, editors, SYNASC, pages 407–414. IEEE

Computer Society, 2007.

[10] O. Andrei and H. Kirchner. A Rewriting Calculus for Multigraphs with Ports. In Proceedings

of RULE’07, volume 219 of Electronic Notes in Theoretical Computer Science, pages 67–82,

2008.

[11] O. Andrei and H. Kirchner. A Higher-Order Graph Calculus for Autonomic Computing. In

Graph Theory, Computational Intelligence and Thought. Golumbic Festschrift, volume 5420

of Lecture Notes in Computer Science, pages 15–26. Springer, 2009.

[12] D. Auber. Tulip. In Graph Drawing, pages 435–437, 2001.

[13] D. Auber. Tulip : A huge graph visualisation framework. In P. Mutzel and M. Jünger, editors,

Graph Drawing Softwares, Mathematics and Visualization, pages 105–126. Springer-Verlag,

2003.

97

BIBLIOGRAPHY 98

[14] D. Auber, P. Mary, M. Mathiaut, J. Dubois, A. Lambert, D. Archambault, R. Bourqui,

B. Pinaud, M. Delest, and G. Melançon. Tulip : a scalable graph visualization framework.

In S. B. Yahia and J.-M. Petit, editors, EGC, volume RNTI-E-19 of Revue des Nouvelles

Technologies de l’Information, pages 623–624. Cépaduès-Éditions, 2010.

[15] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, Great

Britain, 1998.

[16] D. Balasubramanian, A. Narayanan, C. P. van Buskirk, and G. Karsai. The Graph Rewriting

and Transformation Language: GReAT. ECEASST, 1, 2006.

[17] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom: Piggybacking Rewrit-

ing on Java. In F. Baader, editor, RTA, volume 4533 of LNCS, pages 36–47. Springer, 2007.

[18] H. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Holland, 1981.

[19] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway, M. J. Plasmeijer,

and M. R. Sleep. Term graph rewriting. In J. W. de Bakker, A. J. Nijman, and P. C.

Treleaven, editors, PARLE (2), volume 259 of Lecture Notes in Computer Science, pages

141–158. Springer, 1987.

[20] S. Barker and M. Fernández. Term rewriting for access control. In E. Damiani and P. Liu,

editors, DBSec, volume 4127 of Lecture Notes in Computer Science, pages 179–193. Springer,

2006.

[21] K. Barthelmann. How to construct a hyperedge replacement system for a context-free set of

hypergraphs. Technical report, Universität Mainz, Institut für Informatik, 1996.

[22] G. Bonfante, B. Guillaume, M. Morey, and G. Perrier. Modular Graph Rewriting to Compute

Semantics. In J. Bos and S. Pulman, editors, 9th International Conference on Computational

Semantics - IWCS 2011, pages 65–74, Oxford, United Kingdom, Jan. 2011.

[23] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.

Addison-Wesley, Reading Mass, 1999.

[24] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An overview of

ELAN. Electr. Notes Theor. Comput. Sci., 15:55–70, 1998.

[25] T. Bourdier, H. Cirstea, D. J. Dougherty, and H. Kirchner. Extensional and intensional

strategies. In Proceedings Ninth International Workshop on Reduction Strategies in Rewriting

and Programming, volume 15 of EPTCS, pages 1–19, 2009.

[26] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language

and toolset for program transformation. Science of Computer Programming, 2008. Special

issue on Experimental Systems and Tools.

[27] D. Clark, C. Hankin, and S. Hunt. Safety of strictness analysis via term graph rewriting. In

J. Palsberg, editor, SAS, volume 1824 of Lecture Notes in Computer Science, pages 95–114.

Springer, 2000.

BIBLIOGRAPHY 99

[28] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm

for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell., 26(10):1367–1372, 2004.

[29] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches

to graph transformation - part i: Basic concepts and double pushout approach. In Handbook of

Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pages

163–246. World Scientific, 1997.

[30] B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages

193–242. Elsevier and MIT Press, 1990.

[31] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of cellular

signalling. In L. Caires and V. T. Vasconcelos, editors, CONCUR, volume 4703 of Lecture

Notes in Computer Science, pages 17–41. Springer, 2007.

[32] V. Danos and C. Laneve. Graphs for core molecular biology. In C. Priami, editor, CMSB,

volume 2602 of Lecture Notes in Computer Science, pages 34–46. Springer, 2003.

[33] M. Dauchet. Simulation of Turing machines by a left-linear rewrite rule. In Proc. of RTA’89,

volume 355 of Lecture Notes in Computer Science, pages 109–120. Springer, 1989.

[34] F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars. In

G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transforma-

tion. Vol. 1: Foundations, chapter 2, pages 95–162. World Scientific, 1997.

[35] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of Graph Grammars and

Computing by Graph Transformations, Volume 1-3. World Scientific, 1997.

[36] C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and environment. In

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars

and Computing by Graph Transformations, Volume 2: Applications, Languages, and Tools,

pages 551–603. World Scientific, 1997.

[37] M. Fernández. Models of Computation. Undergraduate Topics in Computer Science. Springer

London, 2009.

[38] M. Fernández and I. Mackie. A calculus for interaction nets. In Proceedings of PPDP’99,

Paris, number 1702 in Lecture Notes in Computer Science. Springer, 1999.

[39] M. Fernández and O. Namet. Graph creation, visualisation and transformation. In I. Mackie

and A. M. Moreira, editors, RULE, volume 21 of EPTCS, pages 1–11, 2009.

[40] M. Fernández and O. Namet. Strategic programming on graph rewriting systems. In Pro-

ceedings International Workshop on Strategies in Rewriting, Proving, and Programming, IWS

2010, volume 44 of EPTCS, pages 1–20, 2010.

[41] M. Fowler and K. Scott. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Addison-Wesley, Reading, Mass, 2nd ed edition, 2000.

BIBLIOGRAPHY 100

[42] C. Fox, M. Fernández, and S. Lappin. Lambda Calculus, Type Theory, and Natural Language

II. J. Log. Comput., 18(2):203, 2008.

[43] C. Fuss, C. Mosler, U. Ranger, and E. Schultchen. The jury is still out: A comparison of agg,

fujaba, and progres. ECEASST, 6, 2007.

[44] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. Grgen: A fast spo-based graph

rewriting tool. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors,

ICGT, volume 4178 of Lecture Notes in Computer Science, pages 383–397. Springer, 2006.

[45] G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In Pro-

ceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL’92),

pages 15–26. ACM Press, 1992.

[46] A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revisited. Mathe-

matical Structures in Computer Science, 11(5):637–688, 2001.

[47] A. Habel and D. Plump. Computational completeness of programming languages based on

graph transformation. In Foundations of Software Science and Computation Structures, 4th

International Conference, FOSSACS 2001, Proceedings, volume 2030 of Lecture Notes in Com-

puter Science, pages 230–245. Springer, 2001.

[48] M. Hanus. Curry: A multi-paradigm declarative language (system description). In Twelfth

Workshop Logic Programming, WLP’97, Munich, 1997.

[49] S. L. P. Jones. Haskell 98 language and libraries: the revised report. Cambridge University

Press, 2003.

[50] C. Kirchner, F. Kirchner, and H. Kirchner. Strategic computations and deductions. In Rea-

soning in Simple Type Theory. Studies in Logic and the Foundations of Mathematics, vol.17,

pages 339–364. College Publications, 2008.

[51] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: In-

troduction and survey. Theor. Comput. Sci., 121(1&2):279–308, 1993.

[52] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of

Programming Languages (POPL’90), pages 95–108. ACM Press, 1990.

[53] V. Lipets, N. Vanetik, and E. Gudes. Subsea: an efficient heuristic algorithm for subgraph

isomorphism. Data Min. Knowl. Discov., 19(3):320–350, 2009.

[54] S. Lucas. Strategies in programming languages today. Electr. Notes Theor. Comput. Sci.,

124(2):113–118, 2005.

[55] I. Mackie, 2001. Habilitation à diriger des recherches en informatique, Université de Paris 7.

[56] I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, editor, Proceedings

of the 15th International Conference on Rewriting Techniques and Applications (RTA’04),

volume 3091 of Lecture Notes in Computer Science, pages 155–169. Springer-Verlag, 2004.

BIBLIOGRAPHY 101

[57] G. Manning and D. Plump. The GP Programming System. ECEASST, 10, 2008.

[58] G. Manning and D. Plump. The York Abstract Machine. Electr. Notes Theor. Comput. Sci.,

211:231–240, 2008.

[59] N. Martí-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. Electr.

Notes Theor. Comput. Sci., 117:417–441, 2005.

[60] S. B. Navathe and R. Elmasri. Fundamentals of Database Systems (Sixth Edition). Addison

Wesley, 2010.

[61] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In ICSE, pages 742–745,

2000.

[62] H.-O. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals. Springer, Feb. 2004.

[63] G. Perez, I. Olmos, and J. A. Gonzalez. Subgraph isomorphism detection with support for

continuous labels. In FLAIRS Conference, 2010.

[64] M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, 1993.

[65] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,

60-61:17–139, 2004.

[66] D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,

editors, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 2:

Applications, Languages, and Tools, pages 3–61. World Scientific, 1998.

[67] D. Plump. The Graph Programming Language GP. In S. Bozapalidis and G. Rahonis, editors,

CAI, volume 5725 of LNCS, pages 99–122. Springer, 2009.

[68] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In AGTIVE,

volume 3062 of LNCS, pages 479–485. Springer, 2003.

[69] A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES Approach: Language and Environ-

ment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph

Grammars and Computing by Graph Transformations, Volume 2: Applications, Languages,

and Tools, pages 479–546. World Scientific, 1997.

[70] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification. Technical report,

Silicon Graphics Inc., Dec. 2006.

[71] G. Taentzer, E. Biermann, D. Bisztray, B. Bohnet, I. Boneva, A. Boronat, L. Geiger, R. Geiß,

A. Horvath, O. Kniemeyer, T. Mens, B. Ness, D. Plump, and T. Vajk. Applications of graph

transformations with industrial relevance. chapter Generation of Sierpinski Triangles: A Case

Study for Graph Transformation Tools, pages 514–539. Springer-Verlag, Berlin, Heidelberg,

2008.

BIBLIOGRAPHY 102

[72] Terese. Term Rewriting Systems. Cambridge University Press, 2003. M. Bezem, J. W. Klop

and R. de Vrijer, eds.

[73] R. Thiemann, C. Sternagel, J. Giesl, and P. Schneider-Kamp. Loops under strategies ...

continued. In Proceedings International Workshop on Strategies in Rewriting, Proving, and

Programming, volume 44 of EPTCS, pages 51–65, 2010.

[74] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, Jan. 1976.

[75] E. Visser. Stratego: A language for program transformation based on rewriting strategies.

System description of Stratego 0.5. In Proc. of RTA’01, volume 2051 of Lecture Notes in

Computer Science, pages 357–361. Springer-Verlag, 2001.

[76] E. Visser. A survey of strategies in rule-based program transformation systems. J. Symb.

Comput., 40(1):831–873, 2005.

Appendix A

Flag Sorting Example

103

APPENDIX A. FLAG SORTING EXAMPLE 104

Figure A.1: A trace tree for the Flag Sorting example.

APPENDIX A. FLAG SORTING EXAMPLE 105

Figure A.2: The starting model for the Flag Sorting example, zoomed in to see port naming.

APPENDIX A. FLAG SORTING EXAMPLE 106

Figure A.3: The white1 rule.

Figure A.4: The red1 rule.

APPENDIX A. FLAG SORTING EXAMPLE 107

Figure A.5: The red2 rule.

APPENDIX A. FLAG SORTING EXAMPLE 108

Figure A.6: A small multiples view for the Flag Sorting example: the large font means explicit

models whereas the small font labels intermediate models that highlight the left hand side instance

of a rule.

APPENDIX A. FLAG SORTING EXAMPLE 109

Figure A.7: A small multiples view for the Flag Sorting example zoomed in to the first line.

Appendix B

PORGY Tool

110

APPENDIX B. PORGY TOOL 111

Figure B.1: PORGY node, rule and graph creation main window.

APPENDIX B. PORGY TOOL 112

Figure B.2: The add node window.

Figure B.3: The add port window.

Figure B.4: The add nodes to a model window.

APPENDIX B. PORGY TOOL 113

Figure B.5: The rule creation window.

Figure B.6: The add edge window for rules (Left wiring).

APPENDIX B. PORGY TOOL 114

Figure B.7: The add edge window for rules (Bridge wiring).

APPENDIX B. PORGY TOOL 115

Figure B.8: The main PORGY window.

APPENDIX B. PORGY TOOL 116

Figure B.9: An example trace in PORGY (including some Fail nodes).

APPENDIX B. PORGY TOOL 117

Figure B.10: The apply rule window.

APPENDIX B. PORGY TOOL 118

Figure B.11: The strategy panel.

APPENDIX B. PORGY TOOL 119

Figure B.12: The small multiples view panel..

Figure B.13: The animation panel.

